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Abstract

The  aim  of  this  paper  is  to  study  the Conformal  Para - Sasakian  manifolds.  Section  1  is

devoted  to  the  conformal  C - Killing  vector  field.  Section 2 deals  to  D - Conformal  vector

field  in  a  Para-Sasakian  manifolds.
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1. INTRODUCTION:

Definition 1.1:

If  a  vector  field  u  in  a  Para - Sasakian  manifolds  satisfies  the  relation

(1.1) Lu (g - ) = 2a(g - )

then  the  vector  field  u  is  called  conformal  C - Killing  vector  field.  Wherein  Lu  is  the

Lie  derivative  with  respect  to  u and  ais  a  scalar  field  in  a  Para - Sasakian  manifolds.

Definition 1.2:

If  the  scalar  field  holds  the  relation  (1.1)  then the  scalar  field  in  a  Para-Sasakian

manifolds  is  said  to  be  an  associated  scalar  field  with  regard  to  the  conformal  C - Killing

vector  field  u.

Definition 1.3:

Let  uis  a  conformal  C - Killing  vector  field  in  a Para - Sasakian  manifolds  and

the vector  field  v  is  defined  in  such  a  way

(1.2) v = u - u*
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then  vis  termed  special  conformal  C - Killing  vector  field.

In  a  Para - Sasakian  manifolds,  we  have [8]:

(1.3)  = g

(1.4)  = g

(1.5)   =  


(1.6)  =  

(1.7)  = g 



(1.8)  = 

(1.9)   = 1

(1.10) 
 = 0

(1.11)  = 0
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(1.12) Lu f
 = 0

(1.13) f= f

(1.14) f= u

(1.15) Lu = - (f
)

And

(1.16) R
 = - (n-1).

In a  special  conformal  C - Killing  vector  field,  we  have [3]:

(1.17) u + u = 2{u(+ ) + a(g-)}

and

(1.18) u + Ru+ 2Du

+ 4u + 2(n-1)a = 4(n+1)u* .

In this regard, we have the following theorems:

348 T.S Chauhan, R.C. Dimri, V. K. Srivastava and Indiwar Singh Chauhan



Theorem 1.1:

In  a  Para - Sasakian  manifolds,  a  special  conformal  C - Killing  vector  field

uholds  the  relation

Lu g= - (f
-f

).

Proof:
By  virtue  of  equation  (1.1),  we  have

(1.19) Lu (g - ) = - 2a(g - )

In  view  of  equations  (1.15)  and  (1.19),  we  obtain

(1.20) Lu g = - {(f
-f

) + 2a(g - )}

Contracting  equation  (1.20)  by  and  using  equations  (1.3)  and  (1.9),  we  get

(1.21) Lu g= - (f
-f

)

Theorem 1.2:

In  a  Para - Sasakian  manifolds,  a  special  conformal  C - Killing  vector  field

usatisfies  the  relation
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u= (1/2)(u + u).

Proof:

Contracting  equation  (1.17)  with  and  using  equation  (1.10),  we  obtain

(1.22) (u+u)=2{u+ a(g-)}

From  equations  (1.4), (1.9)  and  (1.22),  we  get

(1.23) u= (1/2)(u + u)

Theorem 1.3:

In  a  Para - Sasakian  manifolds,  a  special  conformal  C - Killing  vector  field

uholds  the  relation

u= {1/(n-1)}{(u)+ 2Du + 4u

+ 2(n-1)a - 4(n+1)u*}.

Proof:
Transvecting  equation (1.18) by  and  using  equation  (1.9),  we  obtain

(1.24) (u) + Ru+ 2Du + 4u
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+ 2(n-1)a = 4(n+1)u*

In  view  of  equations  (1.16)  and  (1.24),  we  get

(1.25) u= {1/(n-1)}{(u)+ 2Du + 4u

+ 2(n-1)a - 4(n+1)u*}.

2. D - CONFORMAL  VECTOR  FIELD  IN  A  PARA - SASAKIAN

MANIFOLDS :

Definition 2.1:

If  a  vector  field  u  satisfies  the  following  relations

(2.1) Lu (g - ) = 2b(g - )

and

(2.2) Lu  = c

then  the  vector  field  u  in  Para - Sasakian  manifold  is  said  to  be    D-conformal  vector

field  with  an  associated  function  b.

Definition 2.2:

If is  constant  in  the  definition  (2.1)  then  D - conformal  vector  field  is  said  to

be  D - homothetic  vector  field.

By  the  definition  of  D - conformal  vector  field,  it  is  easy  to  verify
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(2.3) Lu (g - ) = 2b(g - )

and

(2.4) Lu  = - c.

In  a  Para - Sasakian  manifolds,  we  have [5]:

(2.5)  Lu{

}= (Lu ) - Lu (),

and

(2.6)  Lu{

}= (1/2)g{(Lu g) +(Lu g)-(Lu g)}.

By virtue  of  equations  (1.6), (1.2), (2.5)  and  using  the  relation  c= c,  we  get

(2.7)  Lu  + Lu{

}= c + c

In  view  of  equations  (1.3), (1.7), (2.1), (2.2), (2.6)  and  using  the  relations  b= b,

c= (c
),  we  obtain

(2.8)  Lu{

}= (1/2){b{-

)-b{-
)-b{g

- )} + 2c
 + c - 

 + 2c

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Contracting  equation  (2.8)  by  and  using  equations  (1.4),  (1.9)  and  (1.10),  we

get

(2.9)  Lu{

}= (1/2){b{-

)-b{-
)-b{g

- )} + 2c
 + c - 

 + 2c
.

Theorem 2.1:

D - conformal  vector  field  uin  a  Para - Sasakian  manifolds  holds  the  relation

Lu  - Lu .

Proof:

By  virtue  of  equation  (2.7),  we  have

(2.10) Lu  = c + c - Lu{

},

On  subtracting  equation  (2.10)  from  the  equation  (2.7)  and  using  equation  (1.8),

we  get

(2.11) Lu -Lu = c - c- Lu{

}+ Lu{


}
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Since {

} = {


},  then  we  have

(2.12) Lu - Lu = c - c

In  view  of  equation  (2.12) and  using  the  fact  that c= (c
),  we  obtain

(2.13) Lu - Lu = 0

This established the theorem.

Theorem 2.2:

If  uis  vector  field of  D - conformal  in  a  Para - Sasakian  manifolds  then  the

relation

Lu{

}- Lu{


}= 0

holds  good.

Proof:

On  interchanging and in  equation  (2.8),  then

(2.14) Lu{

}= (1/2){b{-

)-b{-
)-b{g

- )} + 2c
 + c - 

 + 2c

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On  subtracting  equation  (2.14)  from  the  equation  (2.8)  and  using  equations  (1.8)

and  the  relation  c= (c
),  we  get

(2.15) Lu{

}- Lu{


}= 0

Theorem 2.3:

D - conformal  vector  field  uin  a  Para - Sasakian  manifolds  holds  the  relation

c = f
.

Proof:

Taking Lie-derivative  in  equation  (1.9)  on  both  sides, we get

(2.16) Lu + 
 Lu = 0

In  view  of  equations  (2.2)  and  (2.16)  and  using  equation  (1.9),  we  obtain

(2.17) c = -  Lu 

From  equations  (1.9), (1.15)  and  (2.17),  we  get
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(2.18) c = f

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