CONFORMAL PARA - SASAKIAN MANIFOLDS

T.S Chauhan

Deptt. Of Mathematics, Bareilly College, Barielly, India

R.C. Dimri

Deptt. Of Mathematics, HNB Garhwal University, Srinagar, India

V. K. Srivastava

Deptt. Of Mathematics, Uttaranchal Institute of Technology, Dehradun, India

Indiwar Singh Chauhan

Gangdundwara P.G. College, Kashi Ram Nagar, India

Abstract

The aim of this paper is to study the Conformal Para - Sasakian manifolds. Section 1 is devoted to the conformal C - Killing vector field. Section 2 deals to D - Conformal vector field in a Para-Sasakian manifolds.

Mathematics Subject Classification: 53C25

Keywords: Sasakian manifold, conformal P-Sasakian manifold, C - Killing vector field, D -Conformal vector field, Lie derivative

1. INTRODUCTION:

Definition 1.1:

If a vector field \mathbf{u}^{α} in a Para - Sasakian manifolds satisfies the relation

(1.1)
$$\operatorname{Lu}\left(\mathbf{g}_{\alpha\beta} - \boldsymbol{\eta}_{\alpha}\boldsymbol{\eta}_{\beta}\right) = 2\mathbf{a}(\mathbf{g}_{\alpha\beta} - \boldsymbol{\eta}_{\alpha}\boldsymbol{\eta}_{\beta})$$

then the vector field u^{α} is called conformal C-Killing vector field. Wherein Lu is the Lie derivative with respect to u^{α} and a is a scalar field in a Para-Sasakian manifolds.

Definition 1.2:

If the scalar field holds the relation (1.1) then the scalar field in a Para-Sasakian manifolds is said to be an associated scalar field with regard to the conformal C-Killing vector field \mathbf{u}^{α} .

Definition 1.3:

Let u^{α} is a conformal C - Killing vector field in a Para - Sasakian manifolds and the vector field v^{α} is defined in such a way

(1.2)
$$v_{\alpha} = u_{\alpha} - u * \eta_{\alpha}$$

then v^{α} is termed special conformal C - Killing vector field.

In a Para - Sasakian manifolds, we have [8]:

(1.3)
$$\xi^{\alpha} = g^{\alpha\beta}\eta_{\beta}$$

(1.4)
$$\xi^{\alpha} = g^{\alpha\beta}\eta_{\beta}$$

(1.5)
$$\phi^{\alpha}_{\beta} = \nabla_{\beta} \xi^{\alpha}$$

$$\phi_{\alpha\beta} = \nabla_{\alpha} \eta_{\beta}$$

$$\phi_{\alpha\beta} = g_{\lambda\alpha} \phi^{\lambda}_{\beta}$$

$$\phi_{\alpha\beta} = \phi_{\beta\alpha}$$

(1.9)
$$\xi^{\alpha} \eta_{\alpha} = 1$$

$$(1.10) \ \phi^{\alpha}_{\beta} \, \xi^{\beta} = 0$$

$$(1.11) \phi^{\alpha}_{\beta} \eta_{\alpha} = 0$$

(1.12) Lu
$$\eta_{\alpha}$$
 $f^{\alpha} = 0$

$$(1.13) \ \mathbf{f}^{\alpha} = \nabla_{\alpha} \mathbf{f}$$

$$(1.14) f = \eta_{\alpha} u^{\alpha}$$

(1.15) Lu
$$\xi^{\alpha} = -(f_{\beta}\xi^{\beta})\xi^{\alpha}$$

And

(1.16)
$$R_{\alpha\beta} \xi^{\beta} = -(n-1)\eta_{\alpha}$$
.

In a special conformal C - Killing vector field, we have [3]:

$$(1.17) \ \nabla_{\alpha} u_{\beta} + \nabla_{\beta} u_{\alpha} = 2\{u^{\lambda}(\phi_{\lambda\alpha}\eta_{\beta} + \phi_{\lambda\beta}\eta_{\alpha}) + a(g_{\alpha\beta} - \eta_{\alpha}\eta_{\beta})\}$$

and

(1.18)
$$\nabla^{\beta} \nabla_{\beta} u_{\alpha} + R_{\alpha\beta} u^{\alpha} + 2Du\eta_{\alpha}$$
$$+ 4u_{\alpha} + 2(n-1)a_{\alpha} = 4(n+1)u^*\eta_{\alpha}.$$

In this regard, we have the following theorems:

Theorem 1.1:

In a Para - Sasakian manifolds, a special conformal C - Killing vector field \boldsymbol{u}^{α} holds the relation

$$\eta_{\alpha} \operatorname{Lu} g^{\alpha\beta} = -\xi^{\beta} (f_{\nu} \xi^{\nu} - f_{\mu} \xi^{\mu}).$$

Proof:

By virtue of equation (1.1), we have

(1.19) Lu
$$(g^{\alpha\beta} - \xi^{\alpha}\xi^{\beta}) = -2a(g^{\alpha\beta} - \xi^{\alpha}\xi^{\beta})$$

In view of equations (1.15) and (1.19), we obtain

$$(1.20) \ \ Lu \ g_{\alpha\beta} = - \ \{ \xi^{\alpha} \xi^{\beta} (f_{\nu} \xi^{\nu} - f_{\mu} \xi^{\mu}) + 2a(g^{\alpha\beta} - \xi^{\alpha} \xi^{\beta}) \}$$

Contracting equation (1.20) by η_{α} and using equations (1.3) and (1.9), we get

(1.21)
$$\eta_{\alpha} \operatorname{Lu} g^{\alpha\beta} = -\xi^{\beta} (f_{\nu} \xi^{\nu} - f_{\mu} \xi^{\mu})$$

Theorem 1.2:

In a Para - Sasakian manifolds, a special conformal C - Killing vector field \boldsymbol{u}^{α} satisfies the relation

$$u^{\lambda} \phi_{\lambda\beta} = (1/2)\xi^{\alpha} (\nabla_{\alpha} u_{\beta} + \nabla_{\beta} u_{\alpha}).$$

Proof:

Contracting equation (1.17) with ξ^{α} and using equation (1.10), we obtain

$$(1.22) \quad \xi^{\alpha}(\nabla_{\alpha}u_{\beta} + \nabla_{\beta}u_{\alpha}) = 2\{\xi^{\alpha}u^{\lambda}\phi_{\lambda\beta}\eta_{\alpha} + a(\xi^{\alpha}g_{\alpha\beta} - \xi^{\alpha}\eta_{\alpha}\eta_{\beta})\}$$

From equations (1.4), (1.9) and (1.22), we get

(1.23)
$$u^{\lambda} \phi_{\lambda\beta} = (1/2)\xi^{\alpha} (\nabla_{\alpha} u_{\beta} + \nabla_{\beta} u_{\alpha})$$

Theorem 1.3:

In a Para - Sasakian manifolds, a special conformal C - Killing vector field \boldsymbol{u}^{α} holds the relation

$$\begin{split} &\eta_{\alpha}u^{\alpha}=\{1/(n\text{-}1)\}\{\xi^{\alpha}(\nabla^{\beta}\nabla_{\beta}u_{\alpha})+2Du+4\xi^{\alpha}u_{\alpha}\\ &+2(n\text{-}1)\xi^{\alpha}a_{\alpha}\text{-}4(n\text{+}1)u^{*}\}. \end{split}$$

Proof:

Transvecting equation (1.18) by ξ^{α} and using equation (1.9), we obtain

$$(1.24) \ \xi^{\alpha}(\nabla^{\beta}\nabla_{\beta}u_{\alpha}) + \xi^{\alpha}R_{\alpha\beta}u^{\alpha} + 2Du + 4\xi^{\alpha}u_{\alpha}$$

$$+2(n-1)\xi^{\alpha}a_{\alpha} = 4(n+1)u^*$$

In view of equations (1.16) and (1.24), we get

$$\begin{split} (1.25) \ \, \eta_{\alpha} u^{\alpha} &= \{1/(\text{n-1})\} \, \{\xi^{\alpha} (\nabla^{\beta} \nabla_{\beta} u_{\alpha}) + 2 \text{D} u + 4 \xi^{\alpha} u_{\alpha} \\ &\quad + 2 (\text{n-1}) \xi^{\alpha} a_{\alpha} - 4 (\text{n+1}) u^{*} \}. \end{split}$$

2. D - CONFORMAL VECTOR FIELD IN A PARA - SASAKIAN MANIFOLDS:

Definition 2.1:

If a vector field \mathbf{u}^{α} satisfies the following relations

(2.1)
$$\operatorname{Lu}(g_{\alpha\beta} - \eta_{\alpha}\eta_{\beta}) = 2b(g_{\alpha\beta} - \eta_{\alpha}\eta_{\beta})$$

and

(2.2) Lu
$$\eta_{\alpha} = c \eta_{\alpha}$$

then the vector field u^{α} in Para - Sasakian manifold is said to be D-conformal vector field with an associated function b.

Definition 2.2:

If α is constant in the definition (2.1) then D - conformal vector field is said to be D - homothetic vector field.

By the definition of D-conformal vector field, it is easy to verify

352 T.S Chauhan, R.C. Dimri, V. K. Srivastava and Indiwar Singh Chauhan

(2.3)
$$\operatorname{Lu}(g^{\alpha\beta} - \xi^{\alpha}\xi^{\beta}) = 2b(g^{\alpha\beta} - \xi^{\alpha}\xi^{\beta})$$

and

(2.4) Lu
$$\xi^{\alpha} = -c\xi^{\alpha}$$
.

In a Para - Sasakian manifolds, we have [5]:

(2.5)
$$\eta_{\lambda} \operatorname{Lu}\left\{\begin{matrix} \lambda \\ \alpha \beta \end{matrix}\right\} = \nabla_{\alpha} (\operatorname{Lu} \eta_{\beta}) - \operatorname{Lu} (\nabla_{\alpha} \eta_{\beta}),$$

and

(2.6)
$$\operatorname{Lu}\left\{\frac{\lambda}{\alpha\beta}\right\} = (1/2)g^{\lambda\mu}\left\{\nabla_{\alpha}(\operatorname{Lu}g_{\beta\mu}) + \nabla_{\beta}(\operatorname{Lu}g_{\alpha\mu}) - \nabla_{\mu}(\operatorname{Lu}g_{\alpha\beta})\right\}.$$

By virtue of equations (1.6), (1.2), (2.5) and using the relation $c_{\alpha} = \nabla_{\alpha} c$, we get

(2.7)
$$\operatorname{Lu} \phi_{\alpha\beta} + \eta_{\lambda} \operatorname{Lu} \left\{ \begin{matrix} \lambda \\ \alpha \beta \end{matrix} \right\} = c \phi_{\alpha\beta} + c_{\alpha} \eta_{\beta}$$

In view of equations (1.3), (1.7), (2.1), (2.2), (2.6) and using the relations $b_{\alpha} = \nabla_{\alpha} b$, $c_{\alpha} = (c_{\beta} \xi^{\beta}) \eta_{\alpha}$, we obtain

$$(2.8) \qquad \qquad \text{Lu}\{_{\alpha\beta}^{\lambda}\} = (1/2)\{b_{\alpha}\{\delta_{\beta}^{\gamma}-\eta_{\beta}\xi^{\gamma}\} - b_{\beta}\{\delta_{\alpha}^{\gamma}-\eta_{\alpha}\xi^{\gamma}\} - b^{\gamma}\{g_{\alpha\beta}\} - \eta_{\alpha}\eta_{\beta}\} + 2c_{\alpha}\eta_{\beta}\xi^{\gamma} + c^{\gamma}\eta_{\alpha}\eta_{\beta} - \phi_{\alpha\beta}\xi^{\gamma} + 2c\phi_{\alpha\beta}\xi^{\gamma}$$

Contracting equation (2.8) by ξ^{α} and using equations (1.4), (1.9) and (1.10), we get

(2.9)
$$\operatorname{Lu}\left\{\begin{matrix} \lambda \\ \alpha \beta \end{matrix}\right\} = (1/2) \left\{b_{\alpha} \left\{\delta^{\gamma}_{\beta} - \eta_{\beta} \xi^{\gamma}\right\} - b_{\beta} \left\{\delta^{\gamma}_{\alpha} - \eta_{\alpha} \xi^{\gamma}\right\} - b^{\gamma} \left\{g_{\alpha\beta} - \eta_{\alpha} \eta_{\beta}\right\} \right\} + 2c_{\alpha} \eta_{\beta} \xi^{\gamma} + c^{\gamma} \eta_{\alpha} \eta_{\beta} - \phi_{\alpha\beta} \xi^{\gamma} + 2c\phi_{\alpha\beta} \xi^{\gamma}.$$

Theorem 2.1:

D - conformal vector field u^α in a Para - Sasakian manifolds holds the relation $Lu\ \varphi_{\alpha\beta}\ \hbox{-}\ Lu\ \varphi_{\beta\alpha}\ .$

Proof:

By virtue of equation (2.7), we have

(2.10) Lu
$$\phi_{\beta\alpha} = c\phi_{\beta\alpha} + c_{\beta}\eta_{\alpha} - \eta_{\lambda} Lu\{\frac{\lambda}{\beta\alpha}\},$$

On subtracting equation (2.10) from the equation (2.7) and using equation (1.8), we get

(2.11) Lu
$$\phi_{\alpha\beta}$$
-Lu $\phi_{\beta\alpha}$ = $c_{\alpha}\eta_{\beta}$ - $c_{\beta}\eta_{\alpha}$ - η_{λ} Lu $\{ \begin{pmatrix} \lambda \\ \alpha \end{pmatrix} \}$ + η_{λ} Lu $\{ \begin{pmatrix} \lambda \\ \beta \end{pmatrix} \}$

Since $\{ {\alpha \atop \alpha} {\beta} \} = \{ {\beta \atop \beta} {\alpha} \}$, then we have

(2.12) Lu
$$\phi_{\alpha\beta}$$
 - Lu $\phi_{\beta\alpha} = c_{\alpha}\eta_{\beta} - c_{\beta}\eta_{\alpha}$

In view of equation (2.12) and using the fact that $c_{\alpha}^{}=(c_{\beta}^{}\xi^{\beta})\eta_{\alpha}^{}$, we obtain

(2.13) Lu
$$\phi_{\alpha\beta}$$
 - Lu $\phi_{\beta\alpha} = 0$

This established the theorem.

Theorem 2.2:

If \mathbf{u}^{α} is vector field of D - conformal in a Para - Sasakian manifolds then the relation

$$\operatorname{Lu}\left\{\begin{matrix}\lambda\\\alpha\beta\end{matrix}\right\} - \operatorname{Lu}\left\{\begin{matrix}\lambda\\\beta\alpha\end{matrix}\right\} = 0$$

holds good.

Proof:

On interchanging α and β in equation (2.8), then

$$(2.14) \quad \text{Lu}\{_{\beta}^{\lambda}\alpha\} = (1/2)\{b_{\beta}\{\delta^{\gamma}_{\alpha} - \eta_{\alpha}\xi^{\gamma}\} - b_{\alpha}\{\delta^{\gamma}_{\beta} - \eta_{\beta}\xi^{\gamma}\} - b^{\gamma}\{g_{\beta\alpha} - \eta_{\alpha}\eta_{\beta}\}\} + 2c_{\beta}\eta_{\alpha}\xi^{\gamma} + c^{\gamma}\eta_{\alpha}\eta_{\beta} - \phi_{\beta\alpha}\xi^{\gamma} + 2c\phi_{\beta\alpha}\xi^{\gamma}$$

On subtracting equation (2.14) from the equation (2.8) and using equations (1.8) and the relation $c_{\alpha}^{\,=}\,(c_{\beta}^{\,}\xi^{\beta})\eta_{\alpha}^{\,}$, we get

(2.15)
$$\operatorname{Lu}\left\{\begin{matrix} \lambda \\ \alpha \quad \beta \end{matrix}\right\} - \operatorname{Lu}\left\{\begin{matrix} \lambda \\ \beta \quad \alpha \end{matrix}\right\} = 0$$

Theorem 2.3:

D - conformal vector field u^{α} in a Para - Sasakian manifolds holds the relation $c=f_{\beta}\xi^{\beta}.$

Proof:

Taking Lie-derivative in equation (1.9) on both sides, we get

(2.16)
$$\eta_{\alpha} \operatorname{Lu} \xi^{\alpha} + \xi^{\alpha} \operatorname{Lu} \eta_{\alpha} = 0$$

In view of equations (2.2) and (2.16) and using equation (1.9), we obtain

(2.17)
$$c = -\eta_{\alpha} \operatorname{Lu} \xi^{\alpha}$$

From equations (1.9), (1.15) and (2.17), we get

T.S Chauhan, R.C. Dimri, V. K. Srivastava and Indiwar Singh Chauhan

(2.18) $c = f_{\beta} \xi^{\beta}$

356

REFERENCES

- [1] Dr. T.S. Chauhan, Dr. Y.K. Dwivedi and Nirbhay Singh: Some problems on D-conformal para killing vector field in P-Sasakian manifold, Shodh Hastakshep, Vol. No. 1, p. (217-223), (2011).
- [2] J.C. Jeong, J.D. Lee, G.H. Oh and J.S. Pak: On the contact conformal curvature tensor, Bulletin Korean Math. Soc., 27, p. (133-142), (1990).
- [3]. K. Matsumoto: On a conformal C-killing vector field in a compact Sasakian manifold, Tohoku Math. Journ., p. (139-144), 25, (1973).
- [4]. K. Matsumoto: Conformal killing vector fields in a Para Sasakian manifold, J. Korean Math. Soc., p. (135-142),14,(1977).
- [5]. K. Yano: Differential geometry on complex and almost complex spaces, Pergamon Press, (1965).
- [6]. K. Yano and S. Bochner: Curvature and Betti numbers. Ann. AndnMath. Stud., p.(83-105), 32, (1953).
- [7]. T. Adati and K. Matsumoto: On conformally recurrent and confor-mally symmetric P-Sasakian manifolds, TRU, Math., p. (25-32), 13, (1977).
- [8]. T. Adati and T. Miyazawa: Some properties of P Sasakian manifolds, TRU Math., p. (33-42), 13(1), (1977).
- [9]. W. Roster: On Conformally Symmetric Ricci-Recurrent spaces, Colloquium Math., 31,87, (1974).

Received: April, 2012