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ABSTRACT
The purpose of this paper is to delineate an infinitesimal affine transformation in a Para-
Sasakian manifolds. In section 1, we have defined and studied infinitesimal
transformations in a Para-Sasakian manifolds. Section 2 is devoted to an infinitesimal

automorphism in a Para-Sasakian manifolds.
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1. INTRODUCTION :

Definition 1.1:

In a Riemannian manifold, if a vector field u? satisfies the following condition

A oph Y

(1.1) Lu{of‘ﬁ}= v Vg Rl =0

u
B
1s termed an infinitesimal affine transformation of a Para-Sasakian

manifold.

Wherein Lu denotes the Lie-derivative with regard to a vector field u?.

Definition 1.2:

A vector field u% is called curvature preserving infinitesimal transformation of

Para-Sasakian manifold if it satisfies the condition

A
1.2 LuR =0
(1.2) u vap

. A ) ) )
Wherein R o 1s an Riemannian curvature tensor.

Definition 1.3:

A vector field ua is called an infinitesimal homothetic transformation of Para -

Sasakian manifold if ua satisfies the condition
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(1.3) LugOLB = kgaB

Wherein A is any constant.

Definition 1.4:
If A =0 in equation (1.3) then the vector field u% is called infinitesimal
isometry.

In a Riemannian manifold, we have [4]:

A A A

(1.4) LuR yaB_vaL“{B y}- VBLu{a Y}

(1.5) Luf * =12V Lug, +V,Lug -V Lug .)
' a B S Wa ey VB 0 Yy 0P

(1.6) ankyaB = Moy~ Moy -

In this regard, we have the following theorems:
Theorem 1.1:
If a vector field ua be an infinitesimal affine transformation of Para-Sasakian

manifold then u™ becomes curvature preserving infinitesimal transformation.
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Proof:
Since a vector field ua 1s an infinitesimal affine transformation of Para-Sasakian

manifold then

(1.7) Lu{OL"B}= 0

By virtue of equations (1.4) and (1.7), we get

LiR® =0
2 yap

Hence, u~ is curvature preserving infinitesimal transformation of Para-Sasakian

manifold.

Theorem 1.2:

If a vector field ua is an infinitesimal affine transformation of Para-Sasakian

manifold then the condition

P val-o

B

holds good.

Proof:

Since ua 1s an infinitesimal affine transformation of Para-Sasakian manifold then
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ukvLR7b T=0
o

(1.8) vV 0B

B

Transvecting equation (1.8) by n,, we get
A A Y_
(1.9) n?»(vochu )+an YaBu =0

By virtue of equations (1.6) and (1.9), we obtain

A Y_
(1.10) nx(VQVBu )+(nygaB-nagBy)u =0

Transvecting equation (1.10) with éx and using equation (C-2,1.9), we get
A A Y_
(L1 (Vo Vgu) +57(n, 85 - M 8p, 0" =0

Again transvecting equation (1.11) by &B and using equation (C-2,1.4), we obtain

(1.12) P v -0

B
Theorem 1.3:

If a vector field u® is an infinitesimal isometry of Para-

Sasakian manifold then the condition
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&Yn LuRk =n, Lun_-n_ Lun
A ofy B o 'a B

holds good.

Proof:
Taking the Lie-derivative with regard to u? on both sides of equation (1.6), we

get

A A
(1.13) R aBy Lunx+nx LuR OCBY_gBY Luna+na LugBy

- L -Ma L
Say ~B T My
Transvecting equation (1.13) by My, and using equation (1.6), we obtain

Ao
(1.14) (g5, - nggy, Lumy *mymy LR g =m; g Lun,

Y
tmn, Lugg, - g, Lung -myng Lug

Transvecting equation (1.14) with éy and using equation (C-2,1.4), we get

Y Ao Y
(1.15) ¢ M, LuR By nan Luna+§ MMy, LUgBY

-y, Lung - €, ng Lug
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Since u” is an infinitesimal isometry of Para-Sasakian manifold then equation

(1.15) reduces in the form

A
(1.16) &Ynx LuR GBYZHB Luna-na LunB,

2.

INFINITESIMAL AUTOMORPHISM

MANIFOLDS:

Definition 2.1:

relations
(2.1) LugOLB =0
(2.2) Lu&7b =0
(2.3) Luna =0
And

Ao_
(2.4) Lu¢ o 0.

Wherein Lu denotes the Lie-derivative with regard to a vector field u?.

In this regard, we have the following theorem:

IN A PARA-SASAKIAN

A vector field u® is said to be an infinitesimal automorphism if it satisfies the
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Theorem 2.1:

In a Para-Sasakian manifold, if a vector field u% be an infinitesimal

automorphism then u”™ is curvature preserving infinitesimal transformation.

Proof:
If a vector field u® is an infinitesimal automorphism then equation (1.13) reduces

in the form

A

(2.5) LuR™ o =0

M, By

Transvecting equation (2.5) by éx and using equation (C-2,1.9), we obtain

A

(2.6) LuR” o =0

Hence, u™ is curvature preserving infinitesimal transformation of Para-Sasakian

manifold.
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