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Abstract

In this paper, we characterize boundedness of U, D acting on weighted
Bergman-Nevanlinna spaces, where Cy, is the composition operator and
D is the differentiation operator. We also provide a necessary condition
and a sufficient condition for C, D to be compact on weighted Bergman-
Nevanlinna spaces.
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1 Introduction

Let D be the open unit disk in the complex plane C, H(D) be the algebra
of all functions holomorphic on D and A € (—1,00) be a real number. Let

1
dA(z) = —dxdy = —rdrdf be the normalized area measure on D. For each
T 7T

A € (=1,00), we set dvy(z) = (A + 1)(1 — |2]) dA(z2), z € D. Then dvy is
a probability measure on D. The weighted Bergman Nevanlinna space A$(D)
consists of all f € H(D) such that

1 lLageoy = [ Tog™ I (2)ldn(z) < ox,

where | ;
+ flogx if z=>1
log x—{ 0 if x<l1.

In fact, [|f[|laom) fails to be a norm, but (f,9) —= [|f — gllagmp) defines a
translation invariant metric on A$(D) and this turns A{(D) into a complete
metric space. The space A (D) appears in the limit as p — 0 of the weighted
Bergman space

AX(D)

[r e HO) : il = ( [ 1rran) " <o),

in the sense of

tPr—1
lim

=logTt, 0<t<oo.
p—0 p

The Bergman-Nevanlinna space A (D) contains all the Bergman spaces A% (D)
for all p > 0. Obviously, the inequality

log™(z) <log(l+x) <1+log(z); >0

implies that f € A{(D) if and only if

1 llagmy = | Jog(1+ |£(z))dwa(2) < o<,

where X =< Y means that there is a positive constant C' such that C7'X <
Y < CX. See [3] for more about weighted Bergman spaces and weighted
Bergman-Nevanlinna spaces. By the subharmonicity of log(1 + |f(2)]), we

have
[ f1].49 (D)

(1 _ |Z‘2))‘+2’

for all f € A(D). In particular, (1.1) tells us that if f,, — f in A{(D), then
fn — f locally uniformly. Here locally uniform convergence means the uniform

log(1+|f(2)]) < Cy zeD (1.1)
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convergence on every compact subset of D.

Let ¢ be a holomorphic self-map D of itself. The composition operator
C, is defined as follows C,(f)(2) = f(p(2)) for all f € H(D). Let D be
the differentiation operator. We know that on a general space of holomor-
phic functions, the differentiation operator D is typically unbounded. On the
other hand, the composition operator C, is bounded on most of the spaces
of holomorphic functions (see [1] and [6] for details), though the product is
possibly still unbounded there. Hibschweiler and Portnoy [4] defined DC, and
C,D and investigated boundedness and compactness of the operators DC,,
and C,D between weighted Bergman spaces. S. Ohno [5] discussed bound-
edness and compactness of C,D between Hardy spaces. Recently, there are
some papers that deal with these operators from a particular domain space of
holomorphic functions into another space (see for example, [4],[5] and [7]-[18].
In this paper, we characterize boundedness of C,D : A3(D) — A}(D). We
also provide a necessary condition and a sufficient condition for C,D to be
compact on weighted Bergman-Nevanlinna spaces.

2 Preliminary Notes

Denote by D(z,r) the pseudohyperbolic disk whose pseudohyperbolic centre
is z and whose pseudo hyperbolic radius is r, that is:

D(z,r) = {w eD: ‘%’ < r}.

For z,w € D with

(2 —w)
p(Z,W):’m’ <T; O<T<1,

we have

112 _ A=z
Toom = (oo =L o D)= (-]

See [1] for more information on pseudohyperbolic disks. The next two lemmas
can also be found in [1] (see [2] also).

Lemma 2.1 Let 0 < r < 1. Then there is a sequence {a,} in D and a
positive integer M such that

(Z) Uzole(anu T) = D7



382 A. Bhat, Z. Abbas and A. K. Sharma

(ii) Each z € D is in atmost M of the
pseudohyperbolic disks D(aq,2r), D(as,2r), D(as, 2r) - - -;

(1ii) If n # m, then p(ay,,am) > 1/2.

Lemma 2.2 Let A € (—1,00) and > 0, then there exists a constant
C = C(\ pB) such that

dl/A
/|1 zw‘2+>\+6 =1, zeD.

Definition 2.3 A positive Borel measure p on D is called an \-Carleson
measure if and only if
D
sup u(D(z, 1))

zeD (1 —[2[*)*

and it is called a vanishing A-Carleson measure if
 p(D(er)

2[=1 (1 — |2]?)

The next lemma is proved in [2].

< 00,

=0.

Lemma 2.4 Let A € (—1,00) and 0 < r < 1, then there exists a constant
C = C(\,r) such that the following inequality holds:

g1+ 17 <o f, B

Lemma 2.5 Let A € (—1,00) and 0 < r < 1, be fizred. If p is (A + 3)-
Carleson measure on D, then there exists a constant C = C(\,r) such that
the following inequality holds:

/ljlog(lJrlf’(W)l)du(w) SC/DlOg(lﬂf(w)\)du(w)-

Proof. Let 0 < r < 1, be fixed . Pick a sequence {a,} in D satisfying
the conditions of Lemma 2.1. For f € A}(D), we have

[ sl @Ddnt) < 3 [ tom(11 )t

SZM(D(% r)) sup  log(l+[f'(w)])

n=1 we€D(an,r)

= p(D(ay, 1))
S 3 T (a5 o 080 D)

Now p is (A + 3) -Carleson measure on D, so we have

[ 1081+ 1/ @) Ddn(w <cz/ oy 1080+ )i ()
= OM [ log(1+ |f(w)])du(w).
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3 Boundedness and compactness of C,D on
AX(D)

In this section, we characterize boundedness of C,D : A3(D) — A3(D). We
also provide a necessary condition and a sufficient condition for C,D to be
compact on A (D).

Theorem 3.1 Let ¢ be a holomorphic self-map of D. Then the following
are equivalent:

1. C,D : A3(D) — AY(D) is bounded.
2. The pull-back measure vy o o' is a (A + 3)-Carleson measure on D.

Proof. Suppose that C,D : A3(D) — A3(D) is bounded. Consider the

function
(1 - ‘ > | 2))\—1—4

m, z e D.

fa(w) =

By Lemma 2.2, we have

1ol ) < I fellayo) = (1= [

for all z € D. Also ( | |2))\+4
! 2 1 — 1z
L) = O+ 37— s

Therefore |

(1 _ ‘Z|2>>\+4

(1 — zw) 4’

and so we have |f/(w)| < C for some constant C' = C(A). Thus log(1l +
L(w)]) < |fl(w)] for all z,w € D. In addition, we have

[fo(@)]) =< [fL(w)] : ,

(=12 _ (A=)
1=zwl (1 =|wP)

[fo(w)] < [2[(A+3)

=1

for w € D(z,r). Thus |fl(w)| < |z| for w € D(z,r). Since C,D : A3(D) —
AS(D) is bounded, there exists C' > 0 such that

1CDFNlagoy < Cllfollagpy = (1= [,

That is,

(1= |2 < [|CoD Ll ag ) = /D log(1 + [f2(¢(2)]))dva(w)

> C/D |[fi(w)ld(va oo™ (w) = C [f2(w)ld(vro ™) (w)

D(z,r)
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< |zlva o7 D(z,7),

for all z € D. Consequently,

(vao ™' )D(z,7)
sup
b (1 —|z[2)>3

Hence vy 0 o=t is an (A + 3) measure on D. Conversely, suppose that vy o ¢~
is an (A + 3) measure on D. Then by Lemma 2.4, we have for f € AS(D),

1CoD Ll Lagmy = [ Tog(1+ 1 () Ddia(w)

- /D log(1 + | f'(p(w)))d(vr 0 ¢™")(w)

< € [ 1og(1+1£(o() @) = |1 lLugco-

Lemma 3.2 Let ¢ be a holomorphic map of D such that o(D) C D. Then
C,D : AS(D) — AY(D) is compact if and only if for every sequence { f,} which
is bounded in A3(D) and converges to zero uniformly on compact subsets of D
as n — 00, we have [|CyD fol| 49 (py — 0.

Proof follows on the same lines as the proof of proposition 3.11 in [1]. We omit
the details.
We now present a sufficient condition for the compactness of of C,D : A3(D) —

AY(D).

Theorem 3.3 Let ¢ be a holomorphic map of D such that o(D) C D.
Then C,D : A3(D) — AS(D) is compact if the pull-back measure vy o ™! is
a vanishing (A + 3)-Carleson measure on D.

Proof. Suppose that vy o p~! is a vanishing (A + 3)-Carleson measure on D.
Then
(vao 9™ ')D(a,7)
(1— [a[2)*F3
Suppose that {f,,} is a bounded sequence in A{(D) that converges to zero

uniformly on compact subsets of D. Let {a,} be a sequence as in Lemma 2.1
such that |a;| < |ag| < |as|---. Then for each € > 0 we have

— 0 as |a] — 1.

(a0 ) (D(an, 7)) < (1 = |a,|>)*

for all a,, € D such that |a,| > r. Thus

1CD fullugey = [ 1o8(1 + £, (=) da(2)
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_ /D log(1 + | f1,(2))d(vx 0 71)(2)

= log(1 + [/, (2)])d(va 0 0™")(2)

|z|<ro

+ log(1 + [ f,(2)])d(va 0 0™")(2).

|z|>ro

Since {f,} is a bounded sequence in A%(D) that converges to zero uniformly
on compact subsets of D,

lim log(1 + |/ (2)])d(va 0 ¢™")(2) =0,

m—0o0 ‘Z‘STO

whereas the second term in the above expression is bounded by

> [ g+ AN

n=k+1

< 3 (noe)(Dlanr) sup log(L+ ()

n=k+1 z€D(an,r)

- i (a0 p—1)(D(an, 1)) /D( ) )log(l + | fm(2))dra(2)

i (L= anf?)?*

< cOM [ Tog(1+ [ fu(2))dia(z) = €C M|l fullag-

Since € > 0 is arbitrary, we have |[CyD fin||laop) — 0 as m — oo. Hence
C,D : A(D) — A3(D) is compact.
Finally, we provide a necessary condition for compactness of C,D : A3(D) —

AY(D).

Theorem 3.4 Let ¢ be a holomorphic map of D such that o(D) C D.
Then if C,D : AJ(D) — AX(D) is bounded, then vy o @' is a vanishing
(A + 2)-Carleson measure on D.

Proof. Let {a,} be a sequence in D such that |a,| — 1 as n — oo.
Consider the family of functions

fal2) = Slan| A+ 2) P '

(1= lan)** (1 — lan[*)**2
{(1 — Gpy2)20+2)

Clearly, f,, — 0 uniformly on compact subsets of D as n — oo. Also

(-l O
( A

2]an|(A+2) 1 —@p2)20+2)

1fullageoy <1+ [ log*
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ci1yc [ Qolal)™ <1+C
=i /D|1—anz|2(>‘+2) va(z) <14C.

Moreover,
f/( ) (1 _ |an|2)2>\+5 _ [ (1 _ |an|2)>\+2
Z) = Qa, €X — ,
n |an|(1 _ Enz)2’\+5 p (1 _ anz)z()‘“)
and S0 2\2A+5 2\ A+2
‘f/(Z)‘_ (1—‘6%‘ ) * exp | Re (1—‘(%‘ ) i
n o ‘1 _ Enz\2’\+5 p (1 _ @z)%\“) ’
Now

R6<((1 _ |an|2))\+2 > _ 1

1— @2)20\4-2) (1 _ |an|)>\+2’

whenever z € D(a,,r). Thus

/ / ¢
log(1+ |f,(2)]) = log™ |f,(2)] = A= oo

if z € D(ay,r). Therefore,

¢ -t Ay, T
W(WWP )(D(an, 7))

< /D( )log+ 1 (2)]d(va 0 o7 (2) < [|CoD full ag (o)
But compactness of C,D forces |[C,D fpl|a0m) to tend to zero as |a,| — 1.

Thus )
(1m0 (Dl 1))
lan|—1 (1 —a,|?) 2

=0,
and so vy o ¢! is a vanishing (X + 2)-Carleson measure on D.
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