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1 Introduction

Pavelka [8] introduced the concept of fuzzy consequence operator. Recently,
it is developed in the approximate reasoning context with different fuzzy log-
ics on residuated lattices [4,5]. On the other hand, Wille [10] introduced the
structures on lattices which are important mathematical tools for data anal-
ysis and knowledge processing. MV-algebra was introduced by Chang [2] to
provide algebraic models for many valued propositional logic. Recently, it is
developed many directions (BL-algebra, residuated algebra) [5,9,10]. In par-
ticular, noncommutative structures play an important role in metric spaces,
algebraic structures (groups, rings, quantales, pseudo-BL-algebras)[3,6,7,9,10].
Georgescu and Popescu [6] introduced generalized residuated lattice as a non-
commutative structure.

In this paper, we investigate the properties of fuzzy consequence operators
in generalized residuated lattice. In particular, we investigate the relations
between right (resp. left) ®-preorders and fuzzy consequence operators.

2 Preliminaries

Definition 2.1 [6] A structure (L,V, A\, ®,—,=-, L, T) is called a general-
ized residuated lattice iff it satisfies the following properties:
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(L1) (L,Vv,A, L, T) is a bounded lattice where L is the bottom element
and T is the top element;

(L2) (L,®, T) is a monoid,;

(L3) adjointness properties,i.e.

r<y—ziff roy<zif y<z= 2

Two maps °,*: L — L defined by a° = a — L and a* = a = L is called
strong negations if a® = a and a** = a. We define

T

B , lfy:x7 " ' . J_, lfy2x7
To(y) = { 1, otherwise. Taly) =Taly) = { T, otherwise.

In this paper, we assume that (L,V, A, ®,—,=* 2, 1 T) be a generalized

residuated lattice with strong negations * and °.

Definition 2.2 Let X be a set. A function R : X x X — L is called a right
®-preorder on X if it satisfies the following conditions:

(R) (reflexive) R(x,z) =T for all z € X,

(LT) (right transitive) R(x,y) ® R(y, 2) < R(x, z), for all z,y, z € X.

A function R : X x X — L is called a left ®-preorder on X if it satisfies
(R) and the following condition:

(RT) (left transitive) R(y, z) ® R(x,y) < R(x, z), for all z,y,z € X.

Definition 2.3 [5] An operator C': L* — L* is called a fuzzy consequence
operator iff it satisfies the following conditions:

(C1) A< C(A) for A e L¥.

(C2) If A < B, then C(A) < C(B) A e L.

(C3) C(C(A)) = C(A) for A e LX.

Lemma 2.4 For each x,y, 2z, x;,y; € L, the following properties hold.

® 1s isotone in both arguments.

— and = are antitone in the first and isotone in the second argument.
—y=Tiff e<yiffc=y=T.
s T=x=T=Tand T —z=T=2=u1.

x
x

x

. ® (Vier¥i) = Vier( © ;) and (Vier ;) © Y = Vier(z: © y).

T = (Nier i) = Nier(z = 4i) and (Vier ©:) = y = Nier(i — ).
T = (Nier ¥i) = Nier(x = i) and (Vier 2:) = y = Nier(z: = y).
rOx=y)<yand (z —>y) Oz <y.
Y(x=y)oy=2)<(z=2) and (y—=2) 0 (r =y <(r—2).
Je=y<(y=z2)—=(@x=2)adr—-y<(y—2) = (r— 2)

; Nier @7 = (Vier )" and Vier 27 = (Ajer )"

Nier x? = (\/iel“ xi)o and V;ep x? = (/\ieF $i>0-
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(14) (zOy) = z=2— (y — 2) and (zr ©y)" =2 — o°.
(15) (zxQy)=z=y=(r=2) and (rOy)" =y = x*.
(16)z—=(y=2)=y=(r—2)andr=(y—>2)=y— (v = 2).

Proof. (1)-(13) are proved in [6,9].

(14) Since ((z@y) — 2)©O(xOy) < z, we have (zOy) = z <z — (y — 2).
Since (z = (y = 2)) 0 (z0y) < (y = 2) Oy < z, we have z — (y — 2) <
(x®y) — 2.

(16) Since (y@ (:): = (y= z))) Or = y@((:r = (y= z)) @:E) <yo(y=
z) <z thenz — (y=2) <y= (r— 2).

Sincey@((y = (z — z)) @:E) = (y@(y = (x — z)))@x = (z —
2)@x <z theny= (z = 2) <z — (y = 2).

(15) and other cases are similarly proved.

3 Fuzzy consequence operators

Definition 3.1 Let R € L**X be a fuzzy relation. Define mappings
IR Ip, C® Cr: LX — LX as follows:

In(A)(z) = N(R(z,y) = A(y)) T"(A)(x) = N(R(z,y) = Ay)).

Y Y

Cr(A)(z) = V(A(y) © R(y,z)) C%(x) =V (R(y,z) © A(y)).

v v

Definition 3.2 (1) An operator C': L* — L* is called right ®-coherent if
Aly) © C(Ty)(z) < C(A)(x).

(2) An operator C': LX — L% is called left ®-coherent if

C(Ty)(x) © Aly) < C(A)(x).

Lemma 3.3 Let R € LX*X be a fuzzy relation. Define

Ro R(z,2) = \/(R(z,y) ® R(y, 2)), R™'(z,y) = R(y, ).

Y

(1) If R be a right ®-preorder, then R~ be a left ®-preorder.
(2) R is a right ®-preorder on X iff Ro R=R and R(xz,x) = T.
(3) R is a left ®-preorder on X iff R"'o R™' = R7! and R(x,z) = T.
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Proof (1), (2) and (3) are easily proved from:

R(x,2) = ];E 3 ® R(x,2) < Ro R(z,2) = V,(R(z,y) ® R(y, 2))
< R(z,z
R Yz,2) =R7Y :B) O R MNz,2) <R o R Y(z,2)
=V, (R (z,y) © R (y, 2)) = V,(R(y,2) © R(z,y))
< R(z,2) = R}z, 2).

Theorem 3.4 I(A*) = (Cr-1(A))* and IR(A°) = (CR ' (A4))°.

Proof (1)

Theorem 3.5 (1) Let C : L* — LX be a right ®-coherent fuzzy conse-
quence operator and R¢ defined by

Ro(z,y) = C(T)(y).

Then Rc is a right ®-preorder on X and Cp.(A) < C(A) for all A € L* with
Cre(T2)(y) = Re(z,y) = C(Ta)(y).

(2) Let C : LY — L™ be a left ®-coherent fuzzy consequence operator and
Re defined by

Then Re is a left ®-preorder on X and Cr,(A) < C(A) for all A € L* with
Cre(T2)(y) = Re(x,y) = C(T2)(y).

Proof (1) Since C' : L* — L* is right ®-coherent, C(T,)(y) ©C(T,)(2)
C(C(T4))(2). Thus, R¢ is aright ®-preorder on X from: Reo(x,x) = C(T,)(
T.(x) =T and

IA

8
SN~—

>
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Moreover, Cr,(T,)(y) = Re(z,y) = C(T,)(y).
(2) Since C' : L¥ — L is left ®-coherent, C(T,)(z) ® C(T,)(y) <
C(C(T.))(2). Thus, R¢ is a left ®-preorder on X from:

Ro(y, 2) © Ro(x,y) = C(Ty)(2) © C(Tx)(y)
< C(C(Ta))(2) = C(T2)(2) = Ro(x, 2).

Other cases are proved as a similar method in (1).

Theorem 3.6 Let R € LX*X be a fuzzy relation.

(1) CRr is a right ®-coherent operator. Moreover, R is a right ®-preorder
iff Cr s a fuzzy consequence operator with Ro, = R.

(2) CF is a left ®-coherent operator. Moreover, R is a left ®-preorder iff
CF® is a fuzzy consequence operator with Ror = R.

Proof (1) Since Cr(T.)(y) = V.(T.(2) ® R(z,y)) = R(x,y), we have

Cr(A)(z) = V,(Aly) © R(y,z)) = V,(A(y) © Cr(Ty)(z))
> A(y) © Cr(Ty)(x).

Thus Ck is a right ®-coherent operator. Let R be a right ®-preorder. Then
Cg is a fuzzy consequence operator from:

Cr(A)(z) Vy(Aly) © R(y, x)) = A(x) © R(z, ) = A().
CrlCr(A)) (@) =V,(Cr(A)(y) © Rly,x))
Vy (Vo (A(w) © R(w,y)) © Ry, x))
Vo (A(w) © R(w, x)) = Cr(A)(x).
( )

Moreover, Re,(x,y) = Cr(T.)(y) = V.(T2(2) ® R(z,y)) = R(x,y).
Conversely, since Cg is a right ®-coherent fuzzy consequence operator op-
erator, by Theorem 3.5(1), R¢, = R is a right ®-preorder.
(2) Since C(T,)(y) = V.(R(z,y) ® T.(2)) = R(x,y), we have

CH(A) () = V(R(y,2) © A(y)) = V(Cr(T,)(2) © A(y)) = Cr(T,)(x) © Ay).

Y Y

IA

Hence C® is a left ®-coherent operator. Other cases are proved as a similar
method in (1).

Theorem 3.7 (1) If C : L* — L is an operator with C(A) < C(B) for
A< Band a® C(A) < C(a® A) for a € L, then C is a right ®-coherent
operator.

(2) If C : L — L is an operator with C(A) < C(B) for A < B and
CA)oa<C(Aoa) fora € L, then C is a left ©-coherent operator.
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Proof (1) Since A =V, (A(y) ® T,), we have

CA)(x) =CV,(Aly) © Ty))(x) 2V, C(Aly) © Ty) ()
> Vy(Aly) © C(Ty)(x)).

Thus C' is a right ®-coherent operator.
(2) Since A =V,(T, ® A(y)), we have

C(A)(x) = CVy(Ty © Ay))(x) =V, C(T, © A(y))()
>V, (C(Ty) () © A(y))-

Thus C' is a left ®-coherent operator.

Theorem 3.8 Let R € L**X be a fuzzy relation. Define ¢r : L — LX as

Sr(A) (@) = Ir(CR(A))(x) = A (Rz,w) = V(R(y,w) © Ay))).

w

Then the following properties:

(1) ¢r is a left ®-coherent operator.

(2) If R is a left ®-preorder, then ¢r is a fuzzy consequence operator with
a left ®-preorder as follows

Ry (y, ) = ¢r(Ty)(2) = \(R(z,w) = R(y,w)).

w

(3) R is a reflexive relation iff Ry, < R or ¢pp < CF.
(4) R is a left ©-preorder iff Ry, = R or ¢g = CE.

Proof (1) ¢r is a left ®-coherent operator from:

Sr(Ty) (@) © A(y) = Ay (R, w) = V,(R(y,w) © Ty(y))) © Ay)
= Ao (R(z,w) = R(y,w))) © A(y)
< A (R(z,w) = Ry, w) © A(y))
< A (Rz,w) = CT(A)(w))
= ¢r(A)(x)
(2)
or(A)(x) = Ir(CH(A))(x)
= Ao (R(z,w) = V,(R(y,w) © A(y))



Fuzzy consequence operators 681

Thus, ¢R(¢R(A)) > ¢r(A), for all A € L*. Since R is left ®- preorder,
Ir(A) < A < Cr(A) and Iz(CE(A)) C ( ) implies CE(Iz(CE(A))) <
C'R(C’R(A)) = CR(A). Thus (bR(qu( )) = ¢r(A). Moreover,

Ry, (y,x) = /\ R(z,w) = R(y,w)).

|| IA M

(3) Since R is reflexive, Ry, < R and ¢r < C* from

Rop(y,2) = dr(T,)(@) = Au(R(z,w) = R(y,w))
< R(z,z) = R(y,x) = R(y, )

dr(A)(z) = Ip(CR(A)) (@) = Ay (R<x w) =V, (R(y,w) © Ay)))
< R(z,2) = V,(R(y,7) © Aly)) = C*(A)(x).

Conversely,

Ryp(r,2) = or(To)(2) = Ap(R(z,w) = R(z,w)) =T

< CR(T,)(z) = R(w, ).

(4) Since R(z,w) ® R(y,z) < R(y,w) iff R(y,z) < R(z,w) = R(y,w), we
have R < Ry,,. Hence R = Ry,,.
Since R is left ®-transitive, we have

R(w,y) ® R(z,w) ® A(z) < R(x,y) ® A(x)
R(z,w) ® A(x) < R(w,y) = R(x,y) ® A(z)
Thus, CE(A) < ¢r(A).
Conversely,

Rop(y,7) = or(T,)(x) = N(R(z,w) = R(y,w)) > R(y, ) = C*(T,)(x).

w

Thus R(z,w)® R(y,z) < R(y,w) for all z,y,w € X;i.e. Ris left ©-transitive.

Theorem 3.9 Let R € LX*X be a fuzzy relation. Define ¢f : LX — LX as

o)) = I(Cr(A) () = A\ (Rl w )= V(4w © Rly. w))).

Then the following properties:
(1) ¢ is a right ®-coherent operator.

(2) If R is a right ®-preorder, then ¢T is a fuzzy consequence operator with
a right ®-preorder Ryr as follows

Ryn(y, x) = ¢"(T,)(x) = \(R(z,w) = R(y, w)).
(3) R is a reflezive relation iff Ryr < R or ¢'' < Ck.
(4) R is a right ®-preorder iff Ryr = R or ¢% =
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Proof (1) Since (b® (a = ¢)) @a=b0 ((a — ¢) ®a) < b® ¢, we have
bO(a—c)<a—boec.

6f(a® A)(z) = I*(Crla© A))()
= Ao (R(z,w) = V,(a © A(y) © R(y,w)))
= N Vy (R(z,w) = (0 © A(y) © R(y, w)))
> Ao Vy (@ (R(z,w) = (A(y) © R(y w>>§§
> N (@ OV, (R(z,w) = (Aly) © R(y, w))
>a® A, (R(z,w) = V,(Ay) © R(y,w)))
= 0 ® ¢"(A)(x)

¢t (A)(z) =I%(Cr(A))(x) =

€ LX. Since R is a right ®- preorder,
< Cgr(A) implies Cr(IF(Cr(A))) <
= ¢¥(A). Moreover,

Ryn(y,x) = ¢"(T,)(2) = \(R(z,w) = R(y,w)).

w

(3) Since R is reflexive, Rgr < R and ¢ < O from

Ryr(y,z) = ¢"(Ty)(z) = Ay(R(z,w) = R(y, w))
< R(z,z) = R(y,z) = R(y, x)
6R(A) (@) = T*(Cr(A)(@) = A, (R(z,w) = V,(A(y) © R(y, w)))
< R(z,z) = V,(Aly) © R(y, z)) = Cr(A)(z)
Conversely,
Ryr(x, ) (T (x) = Ap(R(z,w) = R(z,w)) =T

(4) Since R(z,y) © R(y,z) < R(z,z) iff R(z,y) < R(y,z) — R(z,z), we
have R < R4r. Hence R = Ryr.
Since R is right O-transitive, we have

A(x) © R(z,y) © R(y, 2) < A(z) © R(z, 2)
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A(z) © R(z,y) < R(y, z) = A(z) © R(z, 2)
Thus, Cr(A) < GR(A).
Conversely,

Rgn(y,x) = ¢"(T,)(x) = A(R(z,w) = R(y,w)) > R(y, ) = Cr(T,)(x).

w

Thus R(y,z)OR(z,w) < R(y,w) for all z,y,w € X;i.e. R isright ©-transitive.

Definition 3.10 Let R € LY be a fuzzy relation. Define mappings
Ry, Ry : L* — LY and R", RY: LY — L as follows:

Ry(A)(z) = \(A(z) = R(z,y)) Rp(A)(x) = N(Az) = R(z,y)),

R*(B)(y) = N(B(y) — R(z.y)) RY(B)(y) = \(B(y) = R(z,y)).

Theorem 3.11 Let R € L**Y be a fuzzy relation. Define ng : LX — LX
as

nr(A)(x) = RN(Ry(A))(x) = A\ (A Alw) = R(w,y)) = R(z,y)).

w

Then the following properties:
(1) ng is a left ®-coherent operator.
(2) ng is a fuzzy consequence operator with a left ®-preorder as follows

Ry (2, 2) = na(T2)(2) = N(R(z,y) = R(z,y)).

w

3) If R € L**X then R is a reflexive relation iff R7' < R.
R
(4) If R € L**X, then R is a right ®-preorder iff RgRl = R.

Proof (1) Since ((b—)a)@c) Ole=b)=0b—=a)0(coO(c=b)< (b=
a) ®b < a, we have (b — a) ©® ¢ < (¢ = b) — a. It follows

na(T2)(@) © A(z) = A, ((Aw T=(w) = R(w,y)) = R(z,y)) © A(2)
= Ny((R(2,y) = R(z,y)) © A(2)
<A, ((R(z,y) = R(z,y)) © A(2)) (by Lemma 2.4(2))
<A, ((A(z) = R(z,y)) — R(:L",y)) (by above equality )
<Ay (A(A(2) = R(z,9)) = R(x,y))
= nr(A)(z).

Hence ng is a left ®-coherent operator.
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na(A)(@) = A, (A A(w) = R(w,y)) = R(z,y))
> A, ((Az) = R(z,y)) —» R(x,y)) > A(x).

Thus, R¥*(R4(A)) > A implies Ry(R*(Ry(A))) < R4(A). Similarly,

Ry(RYB))(y) = A, ((Aw Blw) = R(z,w)) = R(x, y))
=Ny ((B(y) = R(z,y)) :>ny)2

Hence, Ry(R*(Ry(A))) > Ry(A). Thus, nr(nr(A)) = nr(A), for all A € L.
Moreover,

Rz, 2) = na(T2)(2) = N(R(z,y) = R(z,y)).

w

(3) Since R is reflexive, R, < R from

(T2)(@) = Au(R(z, w) = R(z,w))
z,2) = R(x,2) = R(:E,z).

R77R (zv x) = MR
< R(z,
Conversely,

Ry (2, x) nr(T %( z) = Np(R(z,w) = R(x,w)) =T

R(x x

IN ||

(4) Since R(z, :E) R(z,y) < R(z,y) iff R(z,x) < R(z,y) — R(z,y), we
have R(z,z) < R, }(2,z). Hence R = R, \.
Conversely,

Ry (2, 2) = na(T2)(x) = N(R(z,w) = R(z,w)) > R(x, 2).

w

Thus R(z, 2) OR(z,w) < R(z,w) for all x,y, w € X;i.e. R isright ©-transitive.

Theorem 3.12 Let R € L*X*Y be a fuzzy relation. Define n® : LX — LX
as

0™ (A)(x) = R*(Ry(A))( /\( AA(w) = R(w,y) = R(z,y)).

Then the following properties:
(1) n® is a right ®-coherent operator.
(2) n® is a fuzzy consequence operator with a right ®-preorder as follows
Ryn(z,2) = n"(T.)(x) = N(R(z,y) = R(z.y)).
(3) If R € LX*X then R is a reflexive relation iff R;I% <R.
(4) If R € LX*X then R is a left O-preorder iff R;I% =R.
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Proof (1) Since (¢ = b)) ® (a® (b= ¢)) = ((a > b) ®a)® (b= c) <
b®(b=c) <c,wehave a® (b= ¢) < (¢ = b) = a. It follows

Az) @ n*(T)() = A(2) © A, (A T=(w) = R(w,y)) = R(x,y))
= A(2) © \y(R(z,y) = R(z,y))
<A, (A(2) © (R(z,y) = R(z,y))) (by Lemma 2.4(2))
< A, ((A(2) = R(2,)) = R(x,y)) (by above equality )
<A, (A(A(2) = R(2,9)) = R(x,y))
= n"(A)(2).

Hence n* is a right ®-coherent operator.

(2)

n"(A)(z)

= A,
= A,
< Ry

Thus, R+(RY(R+(A))) < Ri(A). Similarly,

R(RY(B))(y) (Aw B(w) = R(z, w)

R(z,y)
(B(y) = R(x,y)) —>R:By>2

=/\y
Hence, Rt(RY(R+(A))) > R
Moreover,

+(A). Thus, n®(n?(A)) = n®(A), for all A € L*.

Ryn(z,2) = n"(T.)(z) = N(B(2,y) = R(2.y))-

w

(3) Since R is reflexive, R_I% < R from

(T2)(@) = Au(B(z, w) = R(z,w))

Ryr(z,x) NR
R(z,2z) = R(x,z2) = R(flj 2).

IA I

Conversely,

Ryn(a,x) = n"(T,)(x) = Aw(R(z,w) = R(z,w)) = T

n
R(z,x).

IA

(4) Since R(z,y) ® R(2) < R(s,y) ift R(z,2) < R(z,y) = R(y), we
have R(z,z) < R;ﬁ(z,x). Hence R = R;I%
Conversely,

Ryr(z,2) = n™(T.)(z) = N(R(z,w) = R(z,w)) > R(z, 2).

w

Thus R(z,w) ® R(x, z) < R(z,w) for all z,y,w € X;i.e. Ris left ®-transitive.
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Example 3.13 Let K = {(x,y) € R* | # > 0} be a set and we define an
operation ® : K x K — K as follows:

(1, 91) ® (w2, y2) = (122, T1Y2 + Y1).

(

Then (K,®) is a group with e = (1,0), (z,y)~" = (1, -1).
We have a positive cone P = {(a,b) € R2 |la=1,b>0,ora> 1} because

PP ={(1,00}, POPC P, (a,b)" ® P (a,b) = P and PU P~} = K.

For (z1,41), (z2,92) € K, we define

(xlvyl) < ($2ayz) g (xlvyl)_l © (l’zayz) € P, (x27y2) © (x17y1>_1 er
< x1 < Ty Or Ty = T2, Y1 < Yo

Then (K, < ®) is a lattice-group. (ref. [1])

For L. C K, the structure (L, ®, =, —, (%, 1),(1,0)) is a generalized resid-
uated lattice with strong negation where 1 = (%, 1) is the least element and
T = (1,0) is the greatest element from the following statements:

(z1,11) © (22,92) = (21,11) ® (T2,92) V (3, 1) = (w122, T1y2 + 1) V (3, 1),

(T, 1) = (22,52) = ((71,91) 7" @ (w2, 90)) A (1,0) = (22, 2-2) A (1,0),
(T1,51) = (22,52) = ((22,92) @ (21,91) ") A (1,0) = (82, =22 + y5) A (1,0).

Furthermore, we have (z,y) = (z,y)* = (z,y)°* from:

(9) =) = () = (5o ),
(@9)° = (o) = (1) = ().

Let X = {a,b,c} be a set. Define R € LX*¥ as

(L0 (%3 (
R = (%7%> (170) (%

(1) Since RoR=R, R'oR' =R and R(z,z) = R"'(z,z) = T, by
Lemma 3.3, R is a right ®-preorder and R is a left @-preorder.

(2) From Theorem 3.6, since R is a right ®-preorder, then R¢,, = R. Since
R is a left ®-preorder, then Ror = R.

(3) From Theorem 3.9, since R is a left ®-preorder, then Ry, = R or
¢r = CF where Ry, (z,y) = Ay (R(y, w) = R(z,w)).

(4) From Theorem 3.10, since R is a right ®-preorder, then Ryz = R or
§R = Cp where Ryn(w,y) = Au(R(y, w) — R(x, w)).

(5) From Theorem 3.11, since R is a right @-preorder, then R, * = R where
Ry (2,y) = Ay (R(y,w) = R(z,w)).

6) From Theorem 3.12, since R is a left ®-preorder, then R} = R where

"

R i (2,y) = Ao(R(y,w) = R(z,w)).



Fuzzy consequence operators 687

References

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25, New
York, 1968.

[2] C.C. Chang, Algebraic analysis of many valued logics, Trans. of
A.M.S.,88(2)(1958), 467-490.

[3] A. Dvurecenskij, On pseudo MV-algebras, Soft Computing,5(2001), 347-
354.

[4] J. Elorza, P. Burillo, Connecting fuzzy preorders, fuzzy consequence op-
erators and fuzzy closure and co-closure systems, Fuzzy Sets and Systems
139(3)(2003), 601-613.

[5] J. Elorza, R.F. Gonzalez, J. Bragard, P. Burillo, On the relation be-
tween fuzzy closing morphological operators, fuzzy consequence operators
induced by fuzzy preorders and fuzzy closure and co-closure systems, (Ar-
ticle in press) Fuzzy Sets and Systems.

6] G. Georgescu, A. Popescu, Non-commutative fuzzy Galois connec-
tions,Soft Computing, 7 (2003), 458-467.

[7] G. Georgescu, A. Popescu, Non-commutative fuzzy structures and pairs
of weak negations, Fuzzy Sets and Systems, 143(2004), 129-155.

[8] J. Pavelka, On fuzzy logic, Zeitschr.f. Math. Logik und Grundlagen d.
Math.Bd. 25(1979), 45-52.

9] E. Turunen, Mathematics Behind Fuzzy Logic, A Springer-Verlag Co.,
1999.

[10] R. Wille, Restructuring lattice theory; an approach based on hierarchies

of concept, in: 1. Rival(Ed.), Ordered Sets, Reidel, Dordrecht, Boston,
1982, 445-470.

Received: September, 2012



