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Abstract

We investigate the properties of fuzzy consequence operators in gen-
eralized residuated lattice. In particular, we investigate the relations
between right (resp. left) ⊙-preorders and fuzzy consequence operators.
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1 Introduction

Pavelka [8] introduced the concept of fuzzy consequence operator. Recently,
it is developed in the approximate reasoning context with different fuzzy log-
ics on residuated lattices [4,5]. On the other hand, Wille [10] introduced the
structures on lattices which are important mathematical tools for data anal-
ysis and knowledge processing. MV-algebra was introduced by Chang [2] to
provide algebraic models for many valued propositional logic. Recently, it is
developed many directions (BL-algebra, residuated algebra) [5,9,10]. In par-
ticular, noncommutative structures play an important role in metric spaces,
algebraic structures (groups, rings, quantales, pseudo-BL-algebras)[3,6,7,9,10].
Georgescu and Popescu [6] introduced generalized residuated lattice as a non-
commutative structure.

In this paper, we investigate the properties of fuzzy consequence operators
in generalized residuated lattice. In particular, we investigate the relations
between right (resp. left) ⊙-preorders and fuzzy consequence operators.

2 Preliminaries

Definition 2.1 [6] A structure (L,∨,∧,⊙,→,⇒,⊥,⊤) is called a general-
ized residuated lattice iff it satisfies the following properties:
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(L1) (L,∨,∧,⊥,⊤) is a bounded lattice where ⊥ is the bottom element
and ⊤ is the top element;

(L2) (L,⊙,⊤) is a monoid;
(L3) adjointness properties,i.e.

x ≤ y → z iff x⊙ y ≤ z iff y ≤ x ⇒ z.

Two maps 0,∗ : L → L defined by a0 = a → ⊥ and a∗ = a ⇒ ⊥ is called
strong negations if a0∗ = a and a∗0 = a. We define

⊤x(y) =

{

⊤, if y = x,

⊥, otherwise.
⊤∗

x(y) = ⊤0

x(y) =

{

⊥, if y = x,

⊤, otherwise.

In this paper, we assume that (L,∨,∧,⊙,→,⇒,∗ ,0 ,⊥,⊤) be a generalized
residuated lattice with strong negations ∗ and 0.

Definition 2.2 Let X be a set. A function R : X×X → L is called a right
⊙-preorder on X if it satisfies the following conditions:

(R) (reflexive) R(x, x) = ⊤ for all x ∈ X ,
(LT) (right transitive) R(x, y)⊙ R(y, z) ≤ R(x, z), for all x, y, z ∈ X .
A function R : X × X → L is called a left ⊙-preorder on X if it satisfies

(R) and the following condition:
(RT) (left transitive) R(y, z)⊙ R(x, y) ≤ R(x, z), for all x, y, z ∈ X .

Definition 2.3 [5] An operator C : LX → LX is called a fuzzy consequence
operator iff it satisfies the following conditions:

(C1) A ≤ C(A) for A ∈ LX .
(C2) If A ≤ B, then C(A) ≤ C(B) A ∈ LX .
(C3) C(C(A)) = C(A) for A ∈ LX .

Lemma 2.4 For each x, y, z, xi, yi ∈ L, the following properties hold.
(1) ⊙ is isotone in both arguments.
(2) → and ⇒ are antitone in the first and isotone in the second argument.
(3) x → y = ⊤ iff x ≤ y iff x ⇒ y = ⊤.
(4) x → ⊤ = x ⇒ ⊤ = ⊤ and ⊤ → x = ⊤ ⇒ x = x.
(5) x⊙ y ≤ x ∧ y.

(6) x⊙ (
∨

i∈Γ yi) =
∨

i∈Γ(x⊙ yi) and (
∨

i∈Γ xi)⊙ y =
∨

i∈Γ(xi ⊙ y).
(7) x → (

∧

i∈Γ yi) =
∧

i∈Γ(x → yi) and (
∨

i∈Γ xi) → y =
∧

i∈Γ(xi → y).
(8) x ⇒ (

∧

i∈Γ yi) =
∧

i∈Γ(x ⇒ yi) and (
∨

i∈Γ xi) ⇒ y =
∧

i∈Γ(xi ⇒ y).
(9) x⊙ (x ⇒ y) ≤ y and (x → y)⊙ x ≤ y.
(10) (x ⇒ y)⊙ (y ⇒ z) ≤ (x ⇒ z) and (y → z)⊙ (x → y) ≤ (x → z).
(11) x ⇒ y ≤ (y ⇒ z) → (x ⇒ z) and x → y ≤ (y → z) ⇒ (x → z)
(12)

∧

i∈Γ x
∗
i = (

∨

i∈Γ xi)
∗ and

∨

i∈Γ x
∗
i = (

∧

i∈Γ xi)
∗.

(13)
∧

i∈Γ x
0

i = (
∨

i∈Γ xi)
0 and

∨

i∈Γ x
0

i = (
∧

i∈Γ xi)
0.
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(14) (x⊙ y) → z = x → (y → z) and (x⊙ y)0 = x → y0.
(15) (x⊙ y) ⇒ z = y ⇒ (x ⇒ z) and (x⊙ y)∗ = y ⇒ x∗.
(16) x → (y ⇒ z) = y ⇒ (x → z) and x ⇒ (y → z) = y → (x ⇒ z).

Proof. (1)-(13) are proved in [6,9].
(14) Since ((x⊙y) → z)⊙(x⊙y) ≤ z, we have (x⊙y) → z ≤ x → (y → z).

Since (x → (y → z)) ⊙ (x ⊙ y) ≤ (y → z) ⊙ y ≤ z, we have x → (y → z) ≤
(x⊙ y) → z.

(16) Since
(

y⊙
(

x → (y ⇒ z)
))

⊙x = y⊙
((

x → (y ⇒ z)
)

⊙x
)

≤ y⊙(y ⇒

z) ≤ z, then x → (y ⇒ z) ≤ y ⇒ (x → z).

Since y ⊙
((

y ⇒ (x → z)
)

⊙ x
)

=
(

y ⊙
(

y ⇒ (x → z)
))

⊙ x = (x →

z)⊙ x ≤ z, then y ⇒ (x → z) ≤ x → (y ⇒ z).
(15) and other cases are similarly proved.

3 Fuzzy consequence operators

Definition 3.1 Let R ∈ LX×X be a fuzzy relation. Define mappings
IR, IR, C

R, CR : LX → LX as follows:

IR(A)(x) =
∧

y

(R(x, y) ⇒ A(y)) IR(A)(x) =
∧

y

(R(x, y) → A(y)).

CR(A)(x) =
∨

y

(A(y)⊙R(y, x)) CR(x) =
∨

y

(R(y, x)⊙A(y)).

Definition 3.2 (1) An operator C : LX → LX is called right ⊙-coherent if

A(y)⊙ C(⊤y)(x) ≤ C(A)(x).

(2) An operator C : LX → LX is called left ⊙-coherent if

C(⊤y)(x)⊙A(y) ≤ C(A)(x).

Lemma 3.3 Let R ∈ LX×X be a fuzzy relation. Define

R ◦R(x, z) =
∨

y

(R(x, y)⊙ R(y, z)), R−1(x, y) = R(y, x).

(1) If R be a right ⊙-preorder, then R−1 be a left ⊙-preorder.
(2) R is a right ⊙-preorder on X iff R ◦R = R and R(x, x) = ⊤.
(3) R is a left ⊙-preorder on X iff R−1 ◦R−1 = R−1 and R(x, x) = ⊤.
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Proof (1), (2) and (3) are easily proved from:

R(x, z) = R(x, x)⊙ R(x, z) ≤ R ◦R(x, z) =
∨

y(R(x, y)⊙R(y, z))
≤ R(x, z)

R−1(x, z) = R−1(x, x)⊙R−1(x, z) ≤ R−1 ◦R−1(x, z)
=

∨

y(R
−1(x, y)⊙R−1(y, z)) =

∨

y(R(y, x)⊙ R(z, y))
≤ R(z, x) = R−1(x, z).

Theorem 3.4 IR(A
∗) = (CR−1(A))∗ and IR(A0) = (CR−1

(A))0.

Proof (1)

IR(A
∗)(x) =

∧

y(R(x, y) ⇒ A∗(y))
= (

∨

y(A(y)⊙ R(x, y))∗ = (CR−1(A))∗.

(2)
IR(A0)(x) =

∧

y(R(x, y) → A0(y))

= (
∨

y(R(x, y)⊙ A(y))0 = (CR−1

(A))0.

Theorem 3.5 (1) Let C : LX → LX be a right ⊙-coherent fuzzy conse-
quence operator and RC defined by

RC(x, y) = C(⊤x)(y).

Then RC is a right ⊙-preorder on X and CRC
(A) ≤ C(A) for all A ∈ LX with

CRC
(⊤x)(y) = RC(x, y) = C(⊤x)(y).
(2) Let C : LX → LX be a left ⊙-coherent fuzzy consequence operator and

RC defined by
RC(x, y) = C(⊤x)(y).

Then RC is a left ⊙-preorder on X and CRC
(A) ≤ C(A) for all A ∈ LX with

CRC
(⊤x)(y) = RC(x, y) = C(⊤x)(y).

Proof (1) Since C : LX → LX is right ⊙-coherent, C(⊤x)(y)⊙C(⊤y)(z) ≤
C(C(⊤x))(z). Thus, RC is a right⊙-preorder onX from: RC(x, x) = C(⊤x)(x) ≥
⊤x(x) = ⊤ and

RC(x, y)⊙RC(y, z) = C(⊤x)(y)⊙ C(⊤y)(z)
≤ C(C(⊤x))(z) = C(⊤x)(z) = RC(x, z).

CRC
(A)(x) =

∨

y(A(y)⊙ RC(y, x))
=

∨

y(A(y)⊙ C(⊤y)(x)) ≤ C(A)(x).
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Moreover, CRC
(⊤x)(y) = RC(x, y) = C(⊤x)(y).

(2) Since C : LX → LX is left ⊙-coherent, C(⊤y)(z) ⊙ C(⊤x)(y) ≤
C(C(⊤x))(z). Thus, RC is a left ⊙-preorder on X from:

RC(y, z)⊙ RC(x, y) = C(⊤y)(z)⊙ C(⊤x)(y)
≤ C(C(⊤x))(z) = C(⊤x)(z) = RC(x, z).

Other cases are proved as a similar method in (1).

Theorem 3.6 Let R ∈ LX×X be a fuzzy relation.
(1) CR is a right ⊙-coherent operator. Moreover, R is a right ⊙-preorder

iff CR is a fuzzy consequence operator with RCR
= R.

(2) CR is a left ⊙-coherent operator. Moreover, R is a left ⊙-preorder iff
CR is a fuzzy consequence operator with RCR = R.

Proof (1) Since CR(⊤x)(y) =
∨

z(⊤x(z)⊙R(z, y)) = R(x, y), we have

CR(A)(x) =
∨

y(A(y)⊙ R(y, x)) =
∨

y(A(y)⊙ CR(⊤y)(x))
≥ A(y)⊙ CR(⊤y)(x).

Thus CR is a right ⊙-coherent operator. Let R be a right ⊙-preorder. Then
CR is a fuzzy consequence operator from:

CR(A)(x) =
∨

y(A(y)⊙ R(y, x)) ≥ A(x)⊙ R(x, x) = A(x).
CR(CR(A))(x) =

∨

y(CR(A)(y)⊙ R(y, x))
=

∨

y(
∨

w(A(w)⊙ R(w, y))⊙ R(y, x))
≤

∨

w(A(w)⊙ R(w, x)) = CR(A)(x).

Moreover, RCR
(x, y) = CR(⊤x)(y) =

∨

z(⊤x(z)⊙R(z, y)) = R(x, y).
Conversely, since CR is a right ⊙-coherent fuzzy consequence operator op-

erator, by Theorem 3.5(1), RCR
= R is a right ⊙-preorder.

(2) Since CR(⊤x)(y) =
∨

z(R(z, y)⊙⊤x(z)) = R(x, y), we have

CR(A)(x) =
∨

y

(R(y, x)⊙A(y)) =
∨

y

(CR(⊤y)(x)⊙A(y)) ≥ CR(⊤y)(x)⊙A(y).

Hence CR is a left ⊙-coherent operator. Other cases are proved as a similar
method in (1).

Theorem 3.7 (1) If C : LX → LX is an operator with C(A) ≤ C(B) for
A ≤ B and α ⊙ C(A) ≤ C(α ⊙ A) for α ∈ L, then C is a right ⊙-coherent
operator.

(2) If C : LX → LX is an operator with C(A) ≤ C(B) for A ≤ B and
C(A)⊙ α ≤ C(A⊙ α) for α ∈ L, then C is a left ⊙-coherent operator.



680 Yong Chan Kim

Proof (1) Since A =
∨

x(A(y)⊙⊤y), we have

C(A)(x) = C(
∨

y(A(y)⊙⊤y))(x) ≥
∨

y C(A(y)⊙⊤y)(x)
≥

∨

y(A(y)⊙ C(⊤y)(x)).

Thus C is a right ⊙-coherent operator.
(2) Since A =

∨

x(⊤y ⊙A(y)), we have

C(A)(x) = C(
∨

y(⊤y ⊙ A(y)))(x) ≥
∨

y C(⊤y ⊙A(y))(x)
≥

∨

y(C(⊤y)(x)⊙A(y)).

Thus C is a left ⊙-coherent operator.

Theorem 3.8 Let R ∈ LX×X be a fuzzy relation. Define φR : LX → LX as

φR(A)(x) = IR(C
R(A))(x) =

∧

w

(

R(x, w) ⇒
∨

y

(R(y, w)⊙A(y))
)

.

Then the following properties:
(1) φR is a left ⊙-coherent operator.
(2) If R is a left ⊙-preorder, then φR is a fuzzy consequence operator with

a left ⊙-preorder as follows

RφR
(y, x) = φR(⊤y)(x) =

∧

w

(R(x, w) ⇒ R(y, w)).

(3) R is a reflexive relation iff RφR
≤ R or φR ≤ CR.

(4) R is a left ⊙-preorder iff RφR
= R or φR = CR.

Proof (1) φR is a left ⊙-coherent operator from:

φR(⊤y)(x)⊙A(y) =
∧

w

(

R(x, w) ⇒
∨

y(R(y, w)⊙⊤y(y))
)

⊙A(y)

=
∧

w

(

R(x, w) ⇒ R(y, w))
)

⊙ A(y)

≤
∧

w

(

R(x, w) ⇒ R(y, w)⊙A(y)
)

≤
∧

w

(

R(x, w) ⇒ CR(A)(w)
)

= φR(A)(x)

(2)

φR(A)(x) = IR(C
R(A))(x)

=
∧

w

(

R(x, w) ⇒
∨

y(R(y, w)⊙ A(y))
)

=
∧

w

(

R(x, w) ⇒ (R(x, w)⊙ A(x))
)

≥ A(x).
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Thus, φR(φR(A)) ≥ φR(A), for all A ∈ LX . Since R is left ⊙- preorder,
IR(A) ≤ A ≤ CR(A) and IR(C

R(A)) ≤ CR(A) implies CR(IR(C
R(A))) ≤

CR(CR(A)) = CR(A). Thus φR(φR(A)) = φR(A). Moreover,

RφR
(y, x) = φR(⊤y)(x) =

∧

w

(R(x, w) ⇒ R(y, w)).

(3) Since R is reflexive, RφR
≤ R and φR ≤ CR from

RφR
(y, x) = φR(⊤y)(x) =

∧

w(R(x, w) ⇒ R(y, w))
≤ R(x, x) ⇒ R(y, x) = R(y, x)

φR(A)(x) = IR(C
R(A))(x) =

∧

w

(

R(x, w) ⇒
∨

y(R(y, w)⊙ A(y))
)

≤ R(x, x) ⇒
∨

y(R(y, x)⊙ A(y)) = CR(A)(x).

Conversely,

RφR
(x, x) = φR(⊤x)(x) =

∧

w(R(x, w) ⇒ R(x, w)) = ⊤
≤ CR(⊤x)(x) = R(x, x).

(4) Since R(x, w)⊙R(y, x) ≤ R(y, w) iff R(y, x) ≤ R(x, w) ⇒ R(y, w), we
have R ≤ RφR

. Hence R = RφR
.

Since R is left ⊙-transitive, we have

R(w, y)⊙R(x, w)⊙ A(x) ≤ R(x, y)⊙ A(x)

R(x, w)⊙ A(x) ≤ R(w, y) ⇒ R(x, y)⊙A(x)

Thus, CR(A) ≤ φR(A).
Conversely,

RφR
(y, x) = φR(⊤y)(x) =

∧

w

(R(x, w) ⇒ R(y, w)) ≥ R(y, x) = CR(⊤y)(x).

Thus R(x, w)⊙R(y, x) ≤ R(y, w) for all x, y, w ∈ X ;i.e. R is left ⊙-transitive.

Theorem 3.9 Let R ∈ LX×X be a fuzzy relation. Define φR : LX → LX as

φR(A)(x) = IR(CR(A))(x) =
∧

w

(

R(x, w) →
∨

y

(A(y)⊙ R(y, w))
)

.

Then the following properties:
(1) φR is a right ⊙-coherent operator.
(2) If R is a right ⊙-preorder, then φR is a fuzzy consequence operator with

a right ⊙-preorder RφR as follows

RφR(y, x) = φR(⊤y)(x) =
∧

w

(R(x, w) → R(y, w)).

(3) R is a reflexive relation iff RφR ≤ R or φR ≤ CR.
(4) R is a right ⊙-preorder iff RφR = R or φR = CR.
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Proof (1) Since (b ⊙ (a → c)) ⊙ a = b ⊙ ((a → c) ⊙ a) ≤ b ⊙ c, we have
b⊙ (a → c) ≤ a → b⊙ c.

φR(A)(x) = IR(CR(A))(x) =
∧

w

(

R(x, w) →
∨

y

(A(y)⊙ R(y, w))
)

.

φR(α⊙ A)(x) = IR(CR(α⊙ A))(x)

=
∧

w

(

R(x, w) →
∨

y(α⊙ A(y)⊙ R(y, w))
)

=
∧

w

∨

y

(

R(x, w) → (α⊙A(y)⊙R(y, w))
)

≥
∧

w

∨

y

(

α⊙
(

R(x, w) → (A(y)⊙ R(y, w))
))

≥
∧

w

(

α⊙
∨

y

(

R(x, w) → (A(y)⊙ R(y, w))
))

≥ α⊙
∧

w

(

R(x, w) →
∨

y(A(y)⊙R(y, w))
)

= α⊙ φR(A)(x).

(2)

φR(A)(x) = IR(CR(A))(x) =
∧

w

(

R(x, w) →
∨

y(A(y)⊙ R(y, w))
)

≥
∧

w

(

R(x, w) → (A(x)⊙ R(x, w))
)

≥ A(x).

Thus, φR(φR(A)) ≥ φR(A), for all A ∈ LX . Since R is a right ⊙- preorder,
IR(A) ≤ A ≤ CR(A) and IR(CR(A)) ≤ CR(A) implies CR(I

R(CR(A))) ≤
CR(CR(A)) = CR(A). Thus φ

R(φR(A)) = φR(A). Moreover,

RφR(y, x) = φR(⊤y)(x) =
∧

w

(R(x, w) → R(y, w)).

(3) Since R is reflexive, RφR ≤ R and φR ≤ CR from

RφR(y, x) = φR(⊤y)(x) =
∧

w(R(x, w) → R(y, w))
≤ R(x, x) → R(y, x) = R(y, x)

φR(A)(x) = IR(CR(A))(x) =
∧

w

(

R(x, w) →
∨

y(A(y)⊙R(y, w))
)

≤ R(x, x) →
∨

y(A(y)⊙R(y, x)) = CR(A)(x).

Conversely,

RφR(x, x) = φR(⊤x)(x) =
∧

w(R(x, w) → R(x, w)) = ⊤
≤ CR(⊤x)(x) = R(x, x).

(4) Since R(x, y) ⊙ R(y, z) ≤ R(x, z) iff R(x, y) ≤ R(y, z) → R(x, z), we
have R ≤ RφR . Hence R = RφR .

Since R is right ⊙-transitive, we have

A(x)⊙R(x, y)⊙R(y, z) ≤ A(x)⊙ R(x, z)
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A(x)⊙ R(x, y) ≤ R(y, z) → A(x)⊙R(x, z)

Thus, CR(A) ≤ φR(A).
Conversely,

RφR(y, x) = φR(⊤y)(x) =
∧

w

(R(x, w) → R(y, w)) ≥ R(y, x) = CR(⊤y)(x).

Thus R(y, x)⊙R(x, w) ≤ R(y, w) for all x, y, w ∈ X ;i.e. R is right ⊙-transitive.

Definition 3.10 Let R ∈ LX×Y be a fuzzy relation. Define mappings
R↑, R⇑ : LX → LY and R↑, R⇑ : LY → LX as follows:

R↑(A)(x) =
∧

y

(A(x) → R(x, y)) R⇑(A)(x) =
∧

y

(A(x) ⇒ R(x, y)),

R↓(B)(y) =
∧

x

(B(y) → R(x, y)) R⇓(B)(y) =
∧

y

(B(y) ⇒ R(x, y)).

Theorem 3.11 Let R ∈ LX×Y be a fuzzy relation. Define ηR : LX → LX

as

ηR(A)(x) = R↓(R⇑(A))(x) =
∧

y

(

(
∧

w

A(w) ⇒ R(w, y)) → R(x, y)
)

.

Then the following properties:
(1) ηR is a left ⊙-coherent operator.
(2) ηR is a fuzzy consequence operator with a left ⊙-preorder as follows

RηR(z, x) = ηR(⊤z)(x) =
∧

w

(R(z, y) → R(x, y)).

(3) If R ∈ LX×X , then R is a reflexive relation iff R−1

ηR
≤ R.

(4) If R ∈ LX×X , then R is a right ⊙-preorder iff R−1

ηR
= R.

Proof (1) Since
(

(b → a)⊙ c
)

⊙ (c ⇒ b) = (b → a)⊙ (c⊙ (c ⇒ b)) ≤ (b →

a)⊙ b ≤ a, we have (b → a)⊙ c ≤ (c ⇒ b) → a. It follows

ηR(⊤z)(x)⊙ A(z) =
∧

y

(

(
∧

w ⊤z(w) ⇒ R(w, y)) → R(x, y)
)

⊙A(z)

=
∧

y((R(z, y) → R(x, y))⊙ A(z)

≤
∧

y

(

(R(z, y) → R(x, y))⊙ A(z)
)

(by Lemma 2.4(2))

≤
∧

y

(

(A(z) ⇒ R(z, y)) → R(x, y)
)

(by above equality )

≤
∧

y

(

∧

z(A(z) ⇒ R(z, y)) → R(x, y)
)

= ηR(A)(x).

Hence ηR is a left ⊙-coherent operator.
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(2)

ηR(A)(x) =
∧

y

(

(
∧

w A(w) ⇒ R(w, y)) → R(x, y)
)

≥
∧

y

(

(A(x) ⇒ R(x, y)) → R(x, y)
)

≥ A(x).

Thus, R↓(R⇑(A)) ≥ A implies R⇑(R
↓(R⇑(A))) ≤ R⇑(A). Similarly,

R⇑(R
↓(B))(y) =

∧

y

(

(
∧

w B(w) → R(x, w)) ⇒ R(x, y)
)

=
∧

y

(

(B(y) → R(x, y)) ⇒ R(x, y)
)

≥ B(y).

Hence, R⇑(R
↓(R⇑(A))) ≥ R⇑(A). Thus, ηR(ηR(A)) = ηR(A), for all A ∈ LX .

Moreover,
RηR(z, x) = ηR(⊤z)(x) =

∧

w

(R(z, y) → R(x, y)).

(3) Since R is reflexive, R−1

ηR
≤ R from

RηR(z, x) = ηR(⊤z)(x) =
∧

w(R(z, w) → R(x, w))
≤ R(z, z) → R(x, z) = R(x, z).

Conversely,

RηR(x, x) = ηR(⊤x)(x) =
∧

w(R(x, w) → R(x, w)) = ⊤
≤ R(x, x).

(4) Since R(z, x) ⊙ R(x, y) ≤ R(z, y) iff R(z, x) ≤ R(x, y) → R(z, y), we
have R(z, x) ≤ R−1

ηR
(z, x). Hence R = R−1

ηR
.

Conversely,

RηR(z, x) = ηR(⊤z)(x) =
∧

w

(R(z, w) → R(x, w)) ≥ R(x, z).

Thus R(x, z)⊙R(z, w) ≤ R(x, w) for all x, y, w ∈ X ;i.e. R is right ⊙-transitive.

Theorem 3.12 Let R ∈ LX×Y be a fuzzy relation. Define ηR : LX → LX

as

ηR(A)(x) = R⇓(R↑(A))(x) =
∧

y

(

(
∧

w

A(w) → R(w, y)) ⇒ R(x, y)
)

.

Then the following properties:
(1) ηR is a right ⊙-coherent operator.
(2) ηR is a fuzzy consequence operator with a right ⊙-preorder as follows

RηR(z, x) = ηR(⊤z)(x) =
∧

w

(R(z, y) ⇒ R(x, y)).

(3) If R ∈ LX×X , then R is a reflexive relation iff R−1

ηR
≤ R.

(4) If R ∈ LX×X , then R is a left ⊙-preorder iff R−1

ηR
= R.
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Proof (1) Since (a → b) ⊙ (a ⊙ (b ⇒ c)) = ((a → b) ⊙ a) ⊙ (b ⇒ c) ≤
b⊙ (b ⇒ c) ≤ c, we have a⊙ (b ⇒ c) ≤ (c ⇒ b) → a. It follows

A(z)⊙ ηR(⊤z)(x) = A(z)⊙
∧

y

(

(
∧

w ⊤z(w) → R(w, y)) ⇒ R(x, y)
)

= A(z)⊙
∧

y(R(z, y) ⇒ R(x, y))

≤
∧

y

(

A(z)⊙ (R(z, y) ⇒ R(x, y))
)

(by Lemma 2.4(2))

≤
∧

y

(

(A(z) → R(z, y)) ⇒ R(x, y)
)

(by above equality )

≤
∧

y

(

∧

z(A(z) → R(z, y)) ⇒ R(x, y)
)

= ηR(A)(x).

Hence ηR is a right ⊙-coherent operator.
(2)

ηR(A)(x) =
∧

y

(

(
∧

w A(w) → R(w, y)) ⇒ R(x, y)
)

=
∧

y

(

(A(x) → R(x, y)) ⇒ R(x, y)
)

≥ A(x).

Thus, R↑(R
⇓(R↑(A))) ≤ R↑(A). Similarly,

R↑(R
⇓(B))(y) =

∧

y

(

(
∧

w B(w) ⇒ R(x, w)) → R(x, y)
)

=
∧

y

(

(B(y) ⇒ R(x, y)) → R(x, y)
)

≥ B(y).

Hence, R↑(R
⇓(R↑(A))) ≥ R↑(A). Thus, ηR(ηR(A)) = ηR(A), for all A ∈ LX .

Moreover,
RηR(z, x) = ηR(⊤z)(x) =

∧

w

(R(z, y) ⇒ R(x, y)).

(3) Since R is reflexive, R−1

ηR
≤ R from

RηR(z, x) = ηR(⊤z)(x) =
∧

w(R(z, w) ⇒ R(x, w))
≤ R(z, z) ⇒ R(x, z) = R(x, z).

Conversely,

RηR(x, x) = ηR(⊤x)(x) =
∧

w(R(x, w) ⇒ R(x, w)) = ⊤
≤ R(x, x).

(4) Since R(x, y) ⊙ R(z, x) ≤ R(z, y) iff R(z, x) ≤ R(x, y) ⇒ R(z, y), we
have R(z, x) ≤ R−1

ηR
(z, x). Hence R = R−1

ηR
.

Conversely,

RηR(z, x) = ηR(⊤z)(x) =
∧

w

(R(z, w) ⇒ R(x, w)) ≥ R(x, z).

Thus R(z, w)⊙R(x, z) ≤ R(x, w) for all x, y, w ∈ X ;i.e. R is left ⊙-transitive.
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Example 3.13 Let K = {(x, y) ∈ R2 | x > 0} be a set and we define an
operation ⊗ : K ×K → K as follows:

(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + y1).

Then (K,⊗) is a group with e = (1, 0), (x, y)−1 = ( 1
x
,− y

x
).

We have a positive cone P = {(a, b) ∈ R2 | a = 1, b ≥ 0 , or a > 1} because
P ∩ P−1 = {(1, 0)}, P ⊙ P ⊂ P , (a, b)−1 ⊙ P ⊙ (a, b) = P and P ∪ P−1 = K.
For (x1, y1), (x2, y2) ∈ K, we define

(x1, y1) ≤ (x2, y2) ⇔ (x1, y1)
−1 ⊙ (x2, y2) ∈ P, (x2, y2)⊙ (x1, y1)

−1 ∈ P

⇔ x1 < x2 or x1 = x2, y1 ≤ y2.

Then (K,≤ ⊗) is a lattice-group. (ref. [1])
For L ⊂ K, the structure (L,⊙,⇒,→, (1

2
, 1), (1, 0)) is a generalized resid-

uated lattice with strong negation where ⊥ = (1
2
, 1) is the least element and

⊤ = (1, 0) is the greatest element from the following statements:

(x1, y1)⊙ (x2, y2) = (x1, y1)⊗ (x2, y2) ∨ (1
2
, 1) = (x1x2, x1y2 + y1) ∨ (1

2
, 1),

(x1, y1) ⇒ (x2, y2) = ((x1, y1)
−1 ⊗ (x2, y2)) ∧ (1, 0) = (x2

x1

, y2−y1
x1

) ∧ (1, 0),

(x1, y1) → (x2, y2) = ((x2, y2)⊗ (x1, y1)
−1) ∧ (1, 0) = (x2

x1

,−x2y1
x1

+ y2) ∧ (1, 0).

Furthermore, we have (x, y) = (x, y)∗◦ = (x, y)◦∗ from:

(x, y)∗ = (x, y) ⇒ (
1

2
, 1) = (

1

2x
,
1− y

x
),

(x, y)∗◦ = (
1

2x
,
1− y

x
) → (

1

2
, 1) = (x, y).

Let X = {a, b, c} be a set. Define R ∈ LX×X as

R =







(1, 0) (5
8
, 5
2
) (5

6
, 5

3
)

(5
7
, 30

7
) (1, 0) (5

8
,−5

4
)

(1,−2) (5
7
, 10

3
) (1, 0)







(1) Since R ◦ R = R , R−1 ◦ R−1 = R−1 and R(x, x) = R−1(x, x) = ⊤, by
Lemma 3.3, R is a right ⊙-preorder and R is a left ⊙-preorder.

(2) From Theorem 3.6, since R is a right ⊙-preorder, then RCR
= R. Since

R is a left ⊙-preorder, then RCR = R.
(3) From Theorem 3.9, since R is a left ⊙-preorder, then RφR

= R or
φR = CR where RφR

(x, y) =
∧

w(R(y, w) ⇒ R(x, w)).
(4) From Theorem 3.10, since R is a right ⊙-preorder, then RφR = R or

φR = CR where RφR(x, y) =
∧

w(R(y, w) → R(x, w)).
(5) From Theorem 3.11, since R is a right ⊙-preorder, then R−1

ηR
= R where

R−1

ηR
(x, y) =

∧

w(R(y, w) → R(x, w)).

(6) From Theorem 3.12, since R is a left ⊙-preorder, then R−1

ηR
= R where

R−1

ηR
(x, y) =

∧

w(R(y, w) ⇒ R(x, w)).
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