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Abstract

This paper considers structures of a class of solvable 3-Lie algebras
which have a filiform 3-Lie algebra as a maximal Hypo-nilpotent ideal.
It is proved that there does not exist metric structures on the 3-Lie
algebras. And the concrete expression of derivations is given, and it is
proved that there exist only two exterior derivations. The result can be
used in the study of solvable 3-Lie algebras.
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1 Introduction

3-Lie algebra [1] has close relationships in many fields on mathematics, math-
ematical physics and string theory (cf. [2, 3, 4, 5]). In paper [6], a class of
solvable 3-Lie algebras which have a filiform 3-Lie algebra as a maximal Hypo-
nilpotent ideal was constructed, and the completely classification was given.
In this paper we study the metric structures and derivation algebras of these

3-Lie algebras.

A 3-Lie algebra is a vector space L over a field F endowed with a 3-ary
multi-linear skew-symmetric operation [z, 9, x3] satisfying the 3-Jacobi iden-

tity

3

[[$171’27$3]ay27y3] = Z[ajlu ) [xi7y27y3]7 o '7':(:3]7 v3717:1:27373 €L.

=1
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A derivation of a 3-Lie algebra L is a linear map D : L — L, such that for
any elements x1,xy, x3 of L

3
D([xbz%zi’»]) :Z[zl’ B D(:L’,), T 553]- (2)

i=1
The set of all derivations of L is a subalgebra of Lie algebra gl(L). This
subalgebra is called the derivation algebra of A, and is denoted by DerL. The
map ad(xy,z3) : L — L defined by ad(z1, x2)(z) = [21, 22, x| for 1,29, © € L
is called a left multiplication. It follows from (2) that ad(zq,x2) is a derivation.
The set of all finite linear combinations of left multiplications is an ideal of
DerL and is denoted by ad(L). Every element in ad(A) is by definition an
inner derivation, and for V xq, 2o, y1, y2 of L,

[ad([lfl, $2)a ad(yb y?)] = ad([[lfl, X2, y1]7 y2) + ad(yla [zla X2, yQ])

An ideal of a 3-Lie algebra L is a subspace I such that [I,L,L] C I. An
ideal I of a 3-Lie algebra L is called a solvable ideal, if I = 0 for some r > 0,
where 1) = I and I*®) is defined by induction, 1+ = [1¢) 1) L] for s > 0.
When L =1, L is a solvable 3-Lie algebra.

An ideal I of is called a nilpotent ideal, if I satisfies I" = 0 for some r > 0,
where I = [ and ["™* = [[", I, L] for »> 0. If I = L, L is called a nilpotent
3-Lie algebra.

Let L be a 3-Lie algebra and I be an ideal of L. If I is a nilpotent subalgebra
but is not a nilpotent ideal, then I is called a hypo-nilpotent ideal of L. If I is
not properly contained in any hypo-nilpotent ideals, then [ is called a maximal
hypo-nilpotent ideal of L.

Let L be a nilpotent m-dimensional 3-Lie algebra over a field F'. If the
lower central series L' (i > 1) satisfy the following condition: dim L’ = m —
(241), i > 1, then L is called a filiform 3-Lie algebra. Denotes N the filiform
3-Lie algebra with the multiplication in a basis e, ---,e,, as follows

le1,e2,¢5] = ej_1,4 < j<m,
[61aej>6m] = 6j—2>5 S] S m — 1.

Lemma 1.1 Let L be an (m + k)-dimensional solvable but non-nilpotent
3-Lie algebra with the maximal Hypo-nilpotent ideal N, where k > 1,m > 5,
then we have k = 1. And there exists a basis {e1,- -, €m,ems1}, such that the
multiplication of L is as follows:

61,62,€j] = ej_1,4 S] S m,

€1, ej,em] = €j_2,5 Sj <m — 1, (3)
em+1, €1, €2] = €,

em+1,€1,65) = (Mm—k+2)ep, 3 < k <m.

[
[
[
[

In the following, L is the 3-Lie algebra in Lemma 1.1, and the characteristic
of the field F' is zero.
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2 Metric Structures on the 3-Lie Algebra L

In this section we discuss the metric properties of the 3-Lie algebra L.
A metric on the 3-Lie algebra L is a symmetric bilinear form B : Lx L — F
satisfying
B([z,y, z],u) + B(z, [x,y,u]) = 0,Vz,y, z,u € L. (4)

Theorem 2.1 There does not exist metric structures on the 3-Lie algebra
L.

Proof. Let B : L x L — F' be the bilinear symmetric form on L which
satisfies identity (4). Then by the multiplication of L, we have

B(eg, e1) = B(lemt1, €1, €2),€1) = Blea, [emt1,€1,€1]) =0,

B(eg, e2) = B([emy1, €1, €2],e2) = —B(eq, [emr1, €2, €2]) = 0,

Blez, ej-1) = Blea, [e1, €2, ¢5]) = —Blez, [er, e2,e2]) = 0,4 < j < m,
B(ea, em) = B([em+1, €1, €2], €m) = —B(e1, [emt1, €2, €m]) = 0,

B(eg, emi1) = B(lema1, €1, €3], ems1) = —B(e1, [emi1, €2, €mi1]) = 0.

Then, B(ey, L) = 0, that is, B is degenerated. Therefore, there does not
exist metric structures on the 3-Lie algebra L.

3 Derivations of the 3-Lie Algebra L

In this section we study the derivations of 3-Lie algebra L. Let D : L — L be

any derivation of L, and suppose the matrix of D in the basis {ey, -, emni1}
m—+1

is A= (ai;), 1 <4, <m+1, thatis, D= Y a;;E;;, where E;; is the matrix
j=1

h

unit with the number 1 in the position i*-row and j*"-column, 1 < i, < m+1.

Theorem 3.1 Let L be the 3-Lie algebra in Lemma 1.1, then the dimension
of the inner derivation algebra is 2m — 1, and

ad(L) = F(Ex + X (m—k+ 2) By ) + F( > B + Epi12) + FEpias
m—1
+F(Bzs = (m = 2)Enia) + F(Bant + % Bjjo = 2Emiam)
‘]:

m m—1
+X Fhy+ X F(Eaj1 = Emjoa = (m = j +2) Enyaj). ()
J= J=

m—+1
Proof. For every 1 < k,l < m+ 1, let ad(eg, e;)(e;) = > aije;. By the
j=1

direct computation according to Lemma 1.1, we have
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ad(eq, es) = E Epi—1 + Epta2, ad(emi1,€1) = Eao + kX_:g(m — k + 2)Egg,

(
(6m+1,€2) = —E12, ad(ey,e3) = (m — 1)Epias,
ad(ems1,€;) = —(m—j+2)Ey;, 3 < j <m;ad(es, ;) = Erj_1,4 < j <m;
ad(e1, e4) = —Faz + (m — 2) B4, ad(ej, ) = E1j_2, 5 <7 <m —1;
(€J,€1> = Egj_l — Emj_g — (m — j + Q)Em+1j, 5 Sj S m — 1,

m—1
ad(eh €m) = —Fop_1 — ‘25 Ejj—2 + 2F i 1m-

]:

Therefore, ad(en1,€;),1 < j < m; ad(er,e;),2 < j < m is a basis of
ad(L), and the dimension of ad(L) is 2m — 1.

Theorem 3.2 The inner derivation algebra ad(L) is a non-nilpotent but
solvable Lie algebra. And ad(L) can be decomposed into the semi-direct sum

. m+1
ad(L) = B+J, where B = ]22 ad(ey, e;) is the solvable subalgebra of ad(L),

J =Y ad(emt1,e;) is an abelian ideal of ad(L), and [B,J] = J.

=2

Proof. Since [ad(epm 1, €x), ad(emi1, e)] =0 for 2 < k1 <m, [J,J] = 0.
By Lemma 1.1 and Theorem 3.1, the products of the basis vectors

lad(eq, e2), ad(€mir,e1)] = mad(€m+1,€l+1) +ad(emy1,€-1), 4 <1 <my

lad(ey, er), ad(emi1,€2)] = 0,3 <k <m—1;

[ad(eq, em), ad(emit, )] = 2ad(emy1,e) + m:—lar:,)ad(emﬂ,el_l), 5 <1<
m —1;

[ad(eh em)v ad(em+17 62)] = __2ad(em+17 em—1)7

[ad(eh ek)v ad(em+17 em)] == Ziiad(em—l—lu ek—2) —+ ad(em+17 ek—1>7 5 S k S
m—1;

[ad(ey, er),ad(er, emi1)] = (M —k +2)ad(er, ex), 3 <k <m;

[ad(617 62)7 ad(€1, em-i-l)] = a'd(ela 62),

[ad(el, €k>7 ad(el, 62)] = ad(el, ek_l), 4 S k S m,
and others are zero.

Then [B, B] = z Fad(ey,e;) C B, [B,J] = J, [J,J] =0, B = 0,
and (adL)® = Z Fad(ey,e;) + Z Fad(em+1,e;) # 0. Therefore ad(L) is

solvable, but non—nllpotent It follows the result.

Theorem 3.3 Let L be the 3-Lie algebra in Lemma 1.1. Then dim DerL =
2m + 1, and

m—1 m
Derl = F(Epsim = 5Bom1 =3 & i)+ F(En+ 3 (m—k+2)Bi)
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m m—2
+ 3% FBu+ 5 F(Ba = By = (0 = b+ 1) B ) + F By
+F(E23 — (m— 2)Em+14) + F( > Epp—1 + Em+12>
f=4
+F(E11 + k;g(m —k+1)Ey — Em+1m+1> + F B
= adL + F(Ell + kX_:g(m —k + 1)Ekk — Em+1m+1) + FE1m+1. (6)

Proof. Let D be any derivation of the 3-Lie algebra L. Suppose
m—+1

D(e;)) = Y apper,1 <i<m-+1. By Lemma 1.1, for 5<j<m—1
k=1

m+1 m+-1 m+1
D([eq, ez, €j]) = [kz_:l a1k€k, €2, €j] + [eq, kz_:l A2k Cf, €j] + [e1, €2, k; ajkek]
= | L =
= (a11 + agg)ej_l + a2m+1(m — ] + 2)6j + kz—:l Ajk+1€k + Ajm+1€2 + 2m€j—2
m+1 a
= D(ej—l) = kz_:l A —1k€k,

m—1
D(le1, e, em]) = arr€j_o + ajo€pm—1 + kZ ajrer—2 + 2ajm11€m + Qmm€;j—2
=5

. m+1
+(m =+ 2)@mms1€; — Amaej_1= D(ej_2) = k2—21 aj_okCk,

m—41

D([e1, ea,e4]) = (a11 + ag2)es + k§4a4kek_1 + agmi162 = D(e3) = k; askek,
m—1

m
D([e1, ea,em]) = (a11 + ax)em—1 + kX_IS 2k Cr—2 — 202m4+16m + k2_34 AmkCh—1

m—+1
+amm+1€2 = D(em—1> = k2—21 Am—1k€k,
D([em+1, €1, €2]) = (@mgims1 + ann + agz)es + kgg(m — k + 2)agey
m m+1
+ X ampnei—1 = D(e2) = X agrex,
k=4 k=1

D([€m+1, €1, 63]) = (m—l)(am+1m+1 +CL11 +a33)63+a3262+k2_:4(m—k+2)a3kek
m+1

=(m—1)D(e3) = (m—1) kZ_:I asier,
D([emy1, €1, e4]) = [(m—1)as3 — @my12]es + (M — 2)(@myimr1 + @11 + Gas)eq
m m+1
(4069 + g_:5(m — k+2)age, = (m—2) g_:l 45 Ck-

For e\_/ery k satisfies 5 < k <m — 1, we have

D([em+1, €1, €k]) = —Amt12€5-1 + Amtim€r—2 + (M —k~+2) (ami1m+1 +a11)ex
m m+1
+ Eg(m — N+ 2)agpen + ages = Y. (M — k + 2)ag,en.
m—1

D([€m+1, €1, 6m]) = am2€2—k§_:5 am+1k€k—2—&m+126m—1+(2a11+2am+1m+1)6m
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m m—+1
+ > (m—Fk+2)amrer = D(2e,) =2 Y. amper,
k=3 k=1

D([6m+1, €2, 6m]) = Um+11Em—1 + 2&216m — Qo€ = 0.

Summarizing, we obtain

apr = agg — (k —4)(an + ag), a2m + akk—1 = ap_15-2, 5 < k < m;

Apk—1 = Am412, G—1k = —(M — k + 2)aomt1 + Qkkt1, 20kk—2 = —Qmt1m,
5<k<m-—1:

k2 = Ag—2m—1, Qkk+1 — Om2 = Ap_2k—1, 0 < k <m — 2;

agpro + (M —k + 2)amme1 = a2k, 5 < k <m — 3;

Ami1e = —(m — k4 2)agk_1, Gmp—2 = —aop—1,4 < k <m — 1;

Qjk4+1 = Aj—1k, ]{3#2,j,j—1,j—2, 3§l{;§m—17

21 F Ukl = Am—1iy 3 <K <M — 35 Umm—1 = Q4125 Gmt12 = 43,

Umiim1 = —A11, Qpme1l = A33 = A11 + A22 + Qa4 Qe = Q11 + 2022,

agy = (m —3)ag; + (m — 2)agg, Ggmi1 = Gg—om = 0,5 <k <m—1;

ap; =0, 4<k<m—-1,7=1,2mm+1; ay, = 0,5 <k < m;

ag, = 0,1 <k <m,k # 3;

A1 = m2 = Qmmt1 = Qmm—2 = 021 = A2y = Aomy1 = 0.

Therefore, the matrix form of D in the basis {e;,- -, i1} is

aj  aj ay ay ag s s Ay ap, a}n+1
0 a3 az ar a - ad_, az_, Sartt o0 0
0 O 03 0 0 0 0 0 0 0
0 0 as 04 0 0 0 0 0 0
0 0 Stapt' a3 0 0 0 0 0 0
00 0 0 0 - Za™ @ Gy 0 0
0 0 —af —a —a - —d_, 0 aj Om 0
0 ai a™ 0 —a? - —5a%_, —4d? _; —3a?_, a’' —al

where 0 = (m —k + 1)ay; + (m — k + 2)ag, 3 <k <m;n,=—(m —k+2),
5 <k <m — 1. Then for every derivation D,

m—1 m
D = apmyim (Em+1m —1FBum1—3 2 Ekk—2) +ag2 (E22 + > (m— k+2)Ekk)
=5 =3
m m—2
+ kX_DZ a1 By + k2_34 Aop (E2k —Epp1—(m—k+ 1)Em+1k+1) + amy13 113
+ags (E23 —(m — 2)Em+14) + am+12( > Brp—1 + Em+12)
=4

+a11(E11 + ki_:g(m —k+1)Ey — Em+1m+1) + i1 Eimgr -

The result follows.

Theorem 3.4 The derivation algebra of L is solvable, and there exist only
two exterior derivations

Dy = Ey + Z(m —k+1)Ew — Epgimi1, Do = Eimga.
k=3
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Therefore, DerL/ad(L) = F Ey41 + F(Ell + kgg(m —k+1)E — Em+1m+1).

Proof. By Theorem 3.2 and Theorem 3.3 we have
DerL' = [DerL, DerL] = adL' + F Eyy1, Der L'* = [DerL, DerL'] = adL'.

There exists s, such that DerL¢*Y = [DerL', DerL'] = adL® = 0. There-
fore, DerL is solvable. Since ad(L) is non-nilpotent, Der L is non-nilpotent.
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