More on some inequalities for the incomplete exponential integral function

Banyat Sroysang

Department of Mathematics and Statistics,
Faculty of Science and Technology,
Thammasat University, Pathumthani 12121 Thailand
banyat@mathstat.sci.tu.ac.th

Abstract

In this paper, we generalize some inequalities involving the incomplete exponential integral function.

Mathematics Subject Classification: 26D15

Keywords: Exponential integral function, inequality

1 Introduction

The exponential integral function [1, 2] is defined by

$$E_n(x) = \int_1^\infty t^{-n} e^{-xt} dt$$

where x > 0 and $n \in \mathbb{N}_0$.

The incomplete exponential integral function is defined by

$$_{a}^{b}E_{n}(x) = \int_{a}^{b} t^{-n}e^{-xt}dt$$

where x > 0, 1 < a < b and $n \in \mathbb{N}_0$.

In 2013, Sroysang [3] proved that the incomplete exponential integral function is non-increasing and then gave the inequalities as follows..

$${}_{a}^{b}E_{m+n}\left(\frac{x}{p} + \frac{y}{q}\right) \le \left({}_{a}^{b}E_{pm}(x)\right)^{1/p} \left({}_{a}^{b}E_{qn}(y)\right)^{1/q} \tag{1}$$

where $1 < a < b, x, y > 0, p > 1 = \frac{1}{p} + \frac{1}{q}$, and $m + n, pm, qn \in \mathbb{N}_0$.

132 Banyat Sroysang

$${}_{a}^{b}E_{n}(xy) \le \left({}_{a}^{b}E_{n}(px)\right)^{1/p} \left({}_{a}^{b}E_{n}(qy)\right)^{1/q} \tag{2}$$

where $1 < a < b, x, y > 1, n \in \mathbb{N}_0, p > 1, \frac{1}{p} + \frac{1}{q} = 1$ and $x + y \le xy$.

$${}_{a}^{b}E_{n}(xy) \ge \left({}_{a}^{b}E_{n}(px)\right)^{1/p} \left({}_{a}^{b}E_{n}(qy)\right)^{1/q} \tag{3}$$

where $1 < a < b, x > 0, 0 < y < 1, n \in \mathbb{N}_0, 0 < p < 1 = \frac{1}{p} + \frac{1}{q}$ and $x + y \ge xy$.

$${}_{a}^{b}E_{n}(xy) \ge \left({}_{a}^{b}E_{n}\left(\frac{rx^{p}}{p}\right)\right)^{1/r} \left({}_{a}^{b}E_{n}\left(\frac{sy^{q}}{q}\right)\right)^{1/s} \tag{4}$$

 $1 < a < b, x, y > 1, n \in \mathbb{N}_0, p > 1, 0 < r < 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1 = \frac{1}{r} + \frac{1}{s}.$ In this paper, we generalize the inequalities (1), (2), (3) and (4).

2 Results

Theorem 2.1. Let $x_i > 0$, $n_i \ge 0$ and $p_i > 1$ be such that $p_i n_i \in \mathbb{N}_0$ for all $i \in \mathbb{N}_m$. Assume that 1 < a < b, $\sum_{i=1}^m p_i = 1$ and $\sum_{i=1}^m n_i \in \mathbb{N}_0$. Then

$${}_{a}^{b} E_{\sum_{i=1}^{m} n_{i}} \left(\sum_{i=1}^{m} \frac{x_{i}}{p_{i}} \right) \leq \prod_{i=1}^{m} \left({}_{a}^{b} E_{p_{i} n_{i}}(x) \right)^{1/p_{i}}.$$

Proof. By the generalized Hölder inequality,

$$\frac{b}{a}E_{\sum_{i=1}^{m}n_{i}}\left(\sum_{i=1}^{m}\frac{x_{i}}{p_{i}}\right) = \int_{a}^{b}t^{-\sum_{i=1}^{m}n_{i}}e^{-t\sum_{i=1}^{m}\frac{x_{i}}{p_{i}}}dt$$

$$= \int_{a}^{b}\left(\prod_{i=1}^{m}t^{-n_{i}}e^{-t\frac{x_{i}}{p_{i}}}\right)dt$$

$$\leq \prod_{i=1}^{m}\left(\int_{a}^{b}t^{-p_{i}n_{i}}e^{-x_{i}t}dt\right)^{1/p_{i}}$$

$$= \prod_{i=1}^{m}\left({}_{a}^{b}E_{p_{i}n_{i}}(x)\right)^{1/p_{i}}.$$

Theorem 2.2. Let $n \in \mathbb{N}_0$, $x_i > 1$ and $p_i > 1$ for all $i \in \mathbb{N}_m$. Assume that 1 < a < b, $\sum_{i=1}^m p_i = 1$ and $\sum_{i=1}^m x_i \le \prod_{i=1}^m x_i$. Then ${}_a^b E_n \left(\prod_{i=1}^m x_i\right) \le \prod_{i=1}^m \left({}_a^b E_n(p_i x_i)\right)^{1/p_i}.$

Proof. In [3], we obtain that ${}_{a}^{b}E_{n}$ is non-increasing. By the generalized Hölder inequality,

$$\frac{b}{a}E_n\left(\prod_{i=1}^m x_i\right) \le \frac{b}{a}E_n\left(\sum_{i=1}^m x_i\right)
= \int_a^b t^{-n}e^{-t\sum_{i=1}^m x_i}dt
= \int_a^b \left(\prod_{i=1}^m t^{-\frac{n}{p_i}}e^{-x_it}\right)dt
\le \prod_{i=1}^m \left(\int_a^b t^{-n}e^{-p_ix_it}dt\right)^{1/p_i}
= \prod_{i=1}^m \left(\frac{b}{a}E_n(p_ix_i)\right)^{1/p_i}.$$

Theorem 2.3. Let $n \in \mathbb{N}_0$, $0 < x_i < 1$ and $0 < p_i < 1$ for all $i \in \mathbb{N}_m$. Assume that 1 < a < b, $\sum_{i=1}^{m} p_i = 1$ and $\sum_{i=1}^{m} x_i \ge \prod_{i=1}^{m} x_i$. Then

$${}_{a}^{b}E_{n}\left(\prod_{i=1}^{m}x_{i}\right) \leq \prod_{i=1}^{m}\left({}_{a}^{b}E_{n}(p_{i}x_{i})\right)^{1/p_{i}}.$$

Proof. In [3], we obtain that ${}_{a}^{b}E_{n}$ is non-increasing. By the generalized reverse Hölder inequality,

134 Banyat Sroysang

Theorem 2.4. Let $n \in \mathbb{N}_0$, $x_i > 1$, $p_i > 1$, and $0 < r_i < 1$ for all $i \in \mathbb{N}_m$. Assume that 1 < a < b and $\sum_{i=1}^{m} p_i = 1 = \sum_{i=1}^{m} r_i$. Then

$$_{a}^{b}E_{n}\left(\prod_{i=1}^{m}x_{i}\right) \geq \prod_{i=1}^{m}\left(_{a}^{b}E_{n}\left(\frac{r_{i}x_{i}^{p_{i}}}{p_{i}}\right)\right)^{1/r_{i}}.$$

Proof. We note that

$$\prod_{i=1}^{m} x_i \le \sum_{i=1}^{m} \frac{x_i^{p_i}}{p_i}.$$

In [3], we obtain that ${}_{a}^{b}E_{n}$ is non-increasing. By the generalized reverse Hölder inequality,

$$\frac{b}{a}E_{n}\left(\prod_{i=1}^{m}x_{i}\right) \geq \frac{b}{a}E_{n}\left(\sum_{i=1}^{m}\frac{x_{i}^{p_{i}}}{p_{i}}\right)
= \int_{a}^{b}t^{-n}e^{-t\sum_{i=1}^{m}\frac{x_{i}^{p_{i}}}{p_{i}}}dt
= \int_{a}^{b}\left(\prod_{i=1}^{m}t^{-\frac{n}{r_{i}}}e^{-\frac{x_{i}^{p_{i}}}{p_{i}}}t\right)dt
\geq \prod_{i=1}^{m}\left(\int_{a}^{b}t^{-n}e^{-\frac{r_{i}x_{i}^{p_{i}}}{p_{i}}}tdt\right)^{1/r_{i}}
= \prod_{i=1}^{m}\left(\frac{b}{a}E_{n}\left(\frac{r_{i}x_{i}^{p_{i}}}{p_{i}}\right)\right)^{1/r_{i}}.$$

References

[1] M. Aabromowitz and I. A. Stegun, Handbook of Mathematical Functions with formulas, Dover Publications, New York, 1965.

- [2] A. Laforgia and P. Natalini, Turan-type inequalities for some special functions, J. Ineq. Pure Appl. Math., 2006, **7**(1), Art. 32.
- [3] B. Sroysang, Inequalities for the incomplete exponential integral functions, Commun. Math. Appl., 2013, 4(2), 145–148.

Received: January, 2014