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1 Introduction

Different types of optimization problems have been solved in normed linear
spaces by many authors [[11]-[17]] during the last several decades. A minimum
cost control problem was formulated and solved by Minamide and Nakamura
[25] in Banach space. Burns [[11], [12]]; Choudhury and Mukherjee [[13]-[17]]
developed a uniform theory of time optimal control problems for system which
can be represented in terms of bounded, linear and onto transformation from
a Banach space of control functions to another Banach space of control func-
tions. Global controllability is an important concept in the field of control
theory [22]. Mukherjee [27] solved the global controllability of a class of min-
imum time control problems in Banach space. Recently, important results
of functional analysis in 2-Banach space were developed by different authors
[[1], [18]-[21], [23], [24], [26], [30]]. They have developed a uniform theory in
2-Banach space. The concept of linear 2-normed spaces has been first intro-
duced by Gähler [20] as an extension of the usual norm and as an interesting
non-linear generalization of normed linear space which has been flourished ex-
tensively in different directions. He proved that if the space is a normed linear
space of dimension greater than one, then it is possible to define a 2-norm
on it. But, the converse is not true [19] i.e., every 2-normed linear space in
not necessarily normable [[28], [29]]. In [5] authors have developed a certain
class of minimum time optimal control problem in 2-Banach space. Here we
define the global controllability of a certain class of generalized minimum time
control problems in arbitrary 2-Banach space. We demonstrate how the solu-
tion of the original problem is obtained from that of the auxiliary problem of
minimization of 2-norm for a terminal time given in advance, which is solved
by generalized functional analytic techniques. More precisely we consider the
following problem as follows:

Let Bt and D be 2-Banach spaces. Let Tt : Bt → D be a bounded linear
transformation depending upon the parameter t. Let Ue(y; t) = {x ∈ Bt :
N1(x − y, e) ≤ t} for some non zero y, e ∈ Bt be a ball in Bt and let ξ ∈ D.
The problem is to determine u ∈ Ue(y; t) such that Ttu = ξ and t is minimum.
Here Bt is an increasing function of t in the sense that Bt1 ⊂ Bt2 , whenever
t1 ≤ t2. Also Tt1 : Bt1 → D can be regarded as the restriction of Tt2 : Bt2 → D.
It is not tough to show that under the above condition Ue(y; t1) ⊂ Ue(y; t2).

2 Technical Preliminaries

Throughout this article we consider, without any loss of generality, real 2-
Banach space of any dimension. We present here some of the definitions and
useful results for the organization of the paper.
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Definition 2.1. Let X be a real vector space of dimension d, d ≥ 2. A
2-norm on X is a function N(., .) : X × X → R which satisfies the following
conditions:

1. N(x, y) = 0 iff x and y are linearly dependent (L.D.),

2. N(x, y) = N(y, x), for all x, y ∈ X,

3. N(αx, y) = |α|N(x, y), α ∈ R and for all x, y ∈ X,

4. N(x, y + z) ≤ N(x, y) +N(x, z) for all x, y, z ∈ X.

The pair (X,N(., .)) is then called a linear 2-normed space.

We observe that N(., .) is non-negative. A 2-normed space (X,N(., .))
is called a 2-Banach space if every Cauchy sequence is convergent. Also if
X and Y are 2-Banach spaces over the field of real numbers, it can be eas-
ily verified that X × Y is also 2-Banach space with respect to the 2-norm
N3(., .) where N3((xi, yi), (xj , yj)) = min{N1(xi, xj), N2(yi, yj)}, i.e. N3(., .) =
min{N1(., .), N2(., .)}, N1(., .) and N2(., .) are 2-norm functions defined on X
and Y respectively and N3((xi, yi), (xj , yj)) = 0 if either xi, xj are L.D. in X or
yi, yj are L.D. in Y . Let N

′

1, N
′

2, N
′

3 are then 2-norm functions defined on the
spaces X

′

, Y
′

, (X × Y )
′

respectively, where N
′

3(., .) = min{N
′

1(., .), N
′

2(., .)};
X

′

, Y
′

, (X × Y )
′

denote the conjugate of X, Y, (X × Y ) respectively.

Example 2.2. Consider (R2, N(., .)) with 2-norm defined by N(a, b) =
|a1b2 − a2b1| where a = (a1, a2) and b = (b1, b2) ∈ R2 and we call this 2-
norm is as standard 2-norm on R2. Geometrically this represents the area of
the parallelogram determined by the vectors a and b as the adjacent sides. For
X = R3. If we take

N1(x, y) = max{|x1y2−x2y1|+|x1y3−x3y1|, |x1y2−x2y1|+|x2y3−x3y2|}, where

x = (x1, x2, x3) and y = (y1, y2, y3) ∈ R3. Then N1(., .) is a 2-norm on R3.

Remark 2.3. Let (X, ‖.‖) be a normed linear space of dimension > 1, then
we can always define a 2-norm N(., .) on it. For x, y ∈ X,

N(x, y) = sup
f,g∈X∗,‖f‖=‖g‖=1

|f(x)g(y)− g(x)f(y)|.

On the other hand, there are examples of 2-normed linear spaces X, where we
can not define any induced norm [20, 29]. Evidently, 2-normed linear space
can be considered as a non linear generalization of normed linear space. But it
should be noted that given a 2-norm N(., .) on a finite dimensional 2-normed
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linear space X, the 2-norm induces a derived norm N∞(.) on X as follows:
Let B = {β1, β2, ..., βd} be a basis for X. Then for x ∈ X,

N∞(x) := max{N(x, βi) : i = 1, 2, ..., d}.

For finite dimensional 2-normed linear space, all these norms are equivalents.
Also for infinite dimensional 2-normed linear space; it may be true, provided
the space is separable inner product space [21].

Example 2.4. We construct an example of a 2-normed linear space (R, N(., .))
where

N(a, b) =
1

2
sup
f,g∈FR

abs

(
∣

∣

∣

∣

f(a) g(a)
f(b) g(b)

∣

∣

∣

∣

)

and FR is the set of all bounded functionals on domain R and with the norm
less or equal to 1. It is to be noted that here we take R as a Banach space over
the field of rationals Q. It is not tough to prove that (R, N(., .)) is a 2-Banach
space with the 2-norm N(., .).

Example 2.5. The n-dimensional Euclidean 2-normN(., .) defined on Rn(n ≥
2) is of the form

N(a, b) =

√

∑

i<j

(αiβj − αjβi)
2

for a = (α1, α2, ..., αn) and b = (β1, β2, ..., βn) ∈ Rn.

Definition 2.6. A 2-functional is a real valued mapping with domain A×B,
where A and B are linear manifolds of a 2-normed linear space X. Let f :
A×B → R be a 2-functional on a 2-normed linear space X then f is called a
linear 2-functional if
(i) f(a+ b, c + d) = f(a, b) + f(a, d) + f(c, b) + f(c, d)
(ii) f(αa, βb) = αβf(a, b) for α, β ∈ R.

For other interesting examples one is referred to [[2]-[10]]. We refer [5] for
necessary definitions and proofs of the following Theorems and Corollaries.

Definition 2.7. The set of all points ξ ∈ D such that Ttu = ξ for some
u ∈ Ue(y; t) and for some non zero y, e ∈ Bt is called the reachable set with
respect to Tt and is denoted by C(t).

Theorem 2.8. The reachable region C(t) is bounded and a convex body,
symmetrical with respect to the origin of D.

Corollary 2.9. The reachable region C(t) is closed when Bt is either a
reflexive space or it can be considered as a conjugate of some other 2-Banach
space.
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Theorem 2.10. An admissible control which will be optimal must satisfy
{N1(u, u1) : u ∈ Ue(y; t)} = 1 for some u1 ∈ Ut.

Theorem 2.11. Let ξ ∈ δC(t) and φ ∈ D∗ denotes a supporting hyper-
plane to C(t) at ξ. Then 〈ξ, φ〉 = {N

′

1(T
∗
t φ, f) : T

∗
t φ, f ∈ B∗

t }, where D
∗ is the

conjugate space to D and T ∗ is the transformation adjoint to T.

Theorem 2.12. Let ξ ∈ δC(t) where t is the given terminal time and
φ ∈ D∗ denotes a supporting hyper-plane at ξ. Let uφ be the optimal control to
reach at ξ in the above sense. Then uφ maximizes 〈u, T ∗

t φ〉 where T ∗
t and D∗

denote the adjoint transformation and adjoint space to Tt and D respectively
and

〈uφ, T
∗
t φ〉 = min

{N1(u,u1):u∈Ue(y;t)}=1
〈u, T ∗

t φ〉 = {N
′

1(T
∗
t φ, f) : T

∗
t φ, f ∈ B∗

t }

for some u1 ∈ Ue(y; t) and {N1(uφ, vφ) : uφ, vφ ∈ Ue(y; t)} = 1.

Theorem 2.13. Let K be a weakly compact, convex set in a 2-Banach space
D and let φ be any element ∈ D∗, the conjugate space of D. Then there exists
a point η0 ∈ K, such that φ denotes a supporting hyper-plane to K at η0 ∈ δK.

3 Main Results

In this section we study the existence of the optimal control of the following
problem in an arbitrary 2-Banach space.
Auxiliary Problem: Let ξ ∈ δC(t) where δC(t) denotes the boundary of the
reachable region C(t) for some given time t. Then we have to determine u ∈
Ue(y; t) such that Ttu = ξ and {N1(u, y) : u ∈ Ue(y; t)} for some y ∈ Ue(y; t)
is minimum. We call this as minimum 2-norm problem. The corresponding
control is regarded as the optimal control.

Now we find the form of the optimal control and also the shape of the
reachable region C(t) with respect to the minimum time t.

Theorem 3.1. If 〈ξ, φ〉 = N
′

1(T
∗
t φ, f) where T

∗
t φ, f ∈ B∗

t , for some ξ ∈ C(t)
and some φ ∈ D∗, then ξ ∈ δC(t) and φ denotes a supporting hyper-plane to
C(t) at ξ, where Bt is either reflexive 2-Banach space or it can be considered
as the conjugate of some other 2-Banach space.

Proof. By the hypothesis made on Bt, we can say C(t) is weakly compact.
Also C(t) is convex. Since φ ∈ D∗ hence by Theorem 2.13, we can show
that there exists a point η ∈ δC(t) such that φ denotes a supporting hyper-
plane to C(t) at η. Consequently by Theorem 2.11, 〈η, φ〉 = N

′

1(T
∗
t φ, f) where

T ∗
t φ, f ∈ B∗

t . But by hypothesis 〈ξ, φ〉 = N
′

1(T
∗
t φ, f) where T ∗

t φ, f ∈ B∗
t for
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some ξ ∈ C(t) and some φ ∈ D∗. If ξ /∈ δC(t), then 〈ξ, φ〉<〈η, φ〉. Therefore,
〈ξ, φ〉 = N

′

1(T
∗
t φ, f) where T ∗

t φ, f ∈ B∗
t which contradicts the hypothesis.

Hence ξ must be in δC(t). Also since 〈η
′

, φ〉 6 〈η, φ〉 = 〈ξ, φ〉, for η
′

∈ C(t).
Consequently, φ defines a supporting hyper-plane at ξ.

Theorem 3.2. The N.A.S.C. for the point ξ ∈ C(t) to be in δC(t) at the
time t = tf is that

max
φ∈D∗such that N

′

1
(T ∗

t φ,f)6=0

〈ξ, φ〉

N
′

1(T
∗
t φ, f)

= 1,

where T ∗
t φ, f ∈ B∗

t and Bt is either reflexive 2-Banach space or it can be
considered as the conjugate of some other 2-Banach space.

Proof. Sufficiency: Suppose

max
φ∈D∗such that N

′

1
(T ∗

t φ,f)6=0

〈ξ, φ〉

N
′

1(T
∗
t φ, f)

= 1,

Let the maximum be attained for some φ = φξ ∈ D∗.Then 〈ξ, φξ〉 = N
′

1(T
∗
tf
φξ, f)

where T ∗
tf
φξ, f ∈ B∗

t for some ξ ∈ C(t). Consequently, by Theorem 3.1,

ξ ∈ δC(tf ) and φξ denotes a supporting hyper-plane to C(tf ) at ξ.
Necessity: Let ξ ∈ δC(tf ). Then by the Theorem 2.11, 〈ξ, φξ〉 = N

′

1(T
∗
tf
φξ, f)

where T ∗
tf
φξ, f ∈ B∗

t where φξ is a supporting hyper-plane to C(tf ) at ξ. There-
fore

max
φ∈D∗such that N

′

1
(T ∗

t φ,f)6=0

〈ξ, φ〉

N
′

1(T
∗
t φ, f)

= 1. (1)

Now, we have to show that (1) gives the maximum value of the left hand side
for all φ ∈ D∗. Let ψ ∈ D∗ be any other 2-functional. If ψ is a supporting
hyper-plane to C(tf) at ξ, then (1) holds. So, let us assume that ψ ∈ D∗

is not a supporting hyper-plane to C(tf ) at ξ. Now by Theorem 2.8 and its
Corollary 2.9 it can be shown that C(tf ) is convex, weakly compact, closed and
bounded set. Consequently, by Theorem 2.13, corresponding to ψ ∈ D∗ there
exists a η0 ∈ C(tf) ∩ δC(tf ) such that ψ is a supporting hyper-plane to η0.
Hence we have 〈ξ, ψ〉 ≤ 〈η0, ψ〉 = N

′

1(T
∗
tf
ψ, f) where T ∗

tf
ψ, f ∈ B∗

t . Therefore
〈ξ,ψ〉

N
′

1
(T ∗

tf
ψ,f)

≤ 1.

This proves that max
ψ∈D∗such that N

′

1
(T ∗

tf
ψ,f)6=0

〈ξ, ψ〉

N
′

1(T
∗
tf
ψ, f)

= 1.

The proof of the Theorems 3.3, 3.5 and Corollary 3.4 can be found in [5].

Theorem 3.3. Let ξ ∈ C(tf) ∩ δC(tf) where C(tf) is the reachable region.

Then max
ψ∈D∗such that N

′

1
(T ∗

t ψ,f)6=0

〈ξ, ψ〉

N
′

1(T
∗
t ψ, f)

is ≤ 1 or ≥ 1 according as t ≥ tf or
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t ≤ tf where T ∗
t ψ, f ∈ B∗

t . Moreover the max is attained at a point ψ ∈ D∗,
where ψ is the supporting hyper-plane to δC(t) at the intersection with the ray
through ξ.

To prove this we require the following Corollary.

Corollary 3.4. Let ξ ∈ C(tf), η = lξ ∈ δC(t) and ψ ∈ D∗ define the
supporting hyper-plane at η, then 〈ξ, ψ〉 > 0.

Theorem 3.5. Let t1 < t2 and Tt1 : Bt1 → D, Tt2 : Bt2 → D be bounded
linear onto transformations. Then C(t1) ⊆ C(t2) and δC(t1) ∩ δC(t2) = Φ iff
N

′

1(T
∗
t2
φ, f2) > N

′

1(T
∗
t1
φ, f1) where T

∗
t1
φ, T ∗

t2
φ, f1, f2 ∈ B∗

t , for some φ ∈ D∗ and
Φ denotes the null set.

Theorem 3.6. Let ξ ∈ C(tf) ∩ δC(tf) and t ≥ tf .

Then max
φ∈D∗such that N

′

1
(T ∗

t φ,f)6=0

〈ξ, φ〉

N
′

1(T
∗
t φ, f)

is a non-increasing function of t, t ≥

tf where T ∗
t φ, f ∈ B∗

t , and for some φ ∈ D∗.

Proof. Let tf < t1 < t2. Then from Theorem 3.3

max
φ∈D∗such that N

′

1
(T ∗

t1
φ,f1)6=0

〈ξ, φ〉

N
′

1(T
∗
t1
φ, f1)

=
〈ξ, φ1〉

N
′

1(T
∗
t1
φ1, f1)

(2)

for T ∗
t1
φ, f1 ∈ B∗

t and for some φ1 ∈ D∗, T ∗
t1
φ ∈ B∗

t where φ1 ∈ D∗, denotes a
supporting hyper-plane to the point of intersection of the ray through ξ with
δC(t1). Denote this point by ξ1 = l1ξ for some l1 > 1. Let ut1 ∈ Ue(y; t1) be
the optimal control to reach ξ1 = Tt1ut1 where Ue(y; t1) is a ball in Bt1 . Since
Tt1 is the restriction of Tt2 on Ue(y; t1), we have

ξ1 = Tt1ut1 = Tt2ut1. (3)

By Theorem 2.11, we also have, 〈ξ1, φ1〉 = N
′

1(T
∗
t1
φ1, f1) where T

∗
t1
φ1, f1 ∈ B∗

t .
Thus from (2) we get, for T ∗

t1
φ, T ∗

t1
φ1, f1 ∈ B∗

t , and for some φ1 ∈ D∗,

max
φ∈D∗such that N

′

1
(T ∗

t1
φ,f1)6=0

〈ξ,φ〉

N
′

1
(T ∗

t1
φ,f1)

= 〈ξ,φ1〉

N
′

1
(T ∗

t1
φ1,f1)

= 〈ξ,φ1〉
〈ξ1,φ1〉

= 〈ξ,φ1〉
〈Tt1ut1 ,φ1〉

= 〈ξ,φ1〉
〈Tt2ut1 ,φ1〉

.

(4)
Again, let

max
φ∈D∗such that N

′

1
(T ∗

t2
φ,f2)6=0

〈ξ, φ〉

N
′

1(T
∗
t2
φ, f2)

=
〈ξ, φ2〉

N
′

1(T
∗
t2
φ2, f2)

where T ∗
t2
φ, T ∗

t2
φ2, f2 ∈ B∗

t and some φ2 ∈ D∗, defines a supporting hyper-plane
to ξ2 = l2ξ1 for some l2 ≥ l1 and ξ2 ∈ δC(t2).
Then we obtain similarity as before

max
φ∈D∗such that N

′

1
(T ∗

t2
φ,f2)6=0

〈ξ, φ〉

N
′

1(T
∗
t2
φ, f2)

=
〈ξ, φ2〉

N
′

1(T
∗
t2
φ2, f2)

= 〈ξ,φ2〉
〈Tt2ut2 ,φ2〉

(5)
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where ut2 ∈ Ut2(y) ⊂ Bt2 is the optimal control to reach at ξ2.
Now, ξ1 ∈ C(t1) = Tt1Ut1(y) = Tt2Ut1(y) ⊂ Tt2Ut2(y) = C(t2). Since φ2 is a

supporting hyper-plane to C(t2) at ξ2, therefore we have 〈ξ1, φ2〉 ≤ 〈ξ2, φ2〉 =
〈Tt2ut2 , φ2〉. Thus by (3), we have

〈Tt2ut1 , φ2〉 ≤ 〈Tt2ut2 , φ2〉. (6)

But

〈Tt2ut1 , φ2〉 = 〈ξ1, φ2〉 = l1〈ξ, φ2〉 =
1

l2
〈ξ2, φ2〉 > 0. (7)

Since θ ∈ Int C(t2).
This also follows from the fact that 〈ξ2, φ2〉 = N

′

1(T
∗
t2
φ2, f2) from Theorem

2.11, where T ∗
t2
φ2, f2 ∈ B∗

t and for some ξ2 ∈ δC(t2) and for some φ2 ∈ D∗.
Also

〈ξ, φ2〉 =
1

l1l2
〈ξ2, φ2〉 > 0. (8)

Hence from (6),(7), (8) we have

〈ξ, φ2〉

〈Tt2ut1 , φ2〉
≥

〈ξ, φ2〉

〈Tt2ut2, φ2〉
. (9)

Since max is attained at φ1, then from (4) and (9),

max
φ∈D∗such that N

′

1
(T ∗

t1
φ,f1)6=0

〈ξ, φ〉

N
′

1(T
∗
t1
φ, f1)

=
〈ξ, φ1〉

〈Tt2ut1 , φ1〉
≥

〈ξ, φ2〉

〈Tt2ut1, φ2〉
(10)

where T ∗
t1
φ, f1 ∈ B∗

t and for some ξ ∈ δC(t) and for some φ1, φ2 ∈ D∗.
Now using (9) and (10), we have

max
φ∈D∗such that N

′

1
(T ∗

t1
φ,f)6=0

〈ξ,φ〉

N
′

1
(T ∗

t1
φ,f)

≥ 〈ξ,φ2〉
〈Tt2ut1 ,φ2〉

≥ 〈ξ,φ2〉
〈Tt2ut2 ,φ2〉

=

max
φ∈D∗such that N

′

1
(T ∗

t2
φ,f)6=0

〈ξ,φ〉

N
′

1
(T ∗

t2
φ,f)

. This proves the theorem.

Theorem 3.7. [5] Let X be a 2-normed linear space andX∗ be its conjugate.
Then ∃ a real bounded 2-linear functional F ∈ X∗, defined on X, such that
F (xi, xj) = N1(xi, xj) where xi, xj ∈ X and sup

xi,xj are not L.D.

|F (xi,xj)|

N1(xi,xj)
= 1. Such F

will be called an extremal of x.

Corollary 3.8. max
φ∈D∗such that N

′

1
(T ∗

t φ,f)6=0

〈ξ, φ〉

N
′

1(T
∗
t φ, f)

is a non-increasing func-

tion of t, for t ≥ 0. where T ∗
t φ, f ∈ B∗

t , and for some φ ∈ D∗.
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4 Global Controllability

We consider the question of global controllability of the system. In this section
we study the necessary and sufficient conditions for global controllability of a
system defined in our previous paper [5]. We like to investigate the possibility
of reaching any point η ∈ D by applying a control u ∈ Ue(y; t) where Ue(y; t) is
a ball in Bt, such that t is the minimum time taken. To resolve this question,
let us first consider the reachable region C(t) by applying all u ∈ Ue(y; t) ⊂ Bt

i.e. TtUe(y; t) = C(t), where Tt is a linear bounded onto transformation from
Bt onto D. Now, let η /∈ C(t) and let ξ ∈ δC(t) be on the ray through η i.e.
ξ = lη where 0 < l < 1 and t∗ be the minimum time to reach ξ. Hence by
Theorem 3.2, we can write

max
φ∈D∗such that N

′

1
(T ∗

t∗
φ,f)6=0

〈ξ, φ〉

N
′

1(T
∗
t∗φ, f)

= 1 (11)

where T ∗
t∗φ, f ∈ B∗

t , and for some φ ∈ D∗ for some ξ ∈ δC(t)∩δC(t∗). Suppose
maximum is attained at φ = φ1. Then 〈ξ, φ1〉 = N

′

1(T
∗
t∗φ1, f) > 0, by Corollary

3.4. Now, 〈ξ, φ〉 is a continuous function of φ, and since 〈ξ, φ1〉 > 0 there exist
a neighborhood of φ1, such that 〈ξ, φ〉 > 0 for all φ in the neighborhood of φ1.
Put 〈ξ, φ〉 = kφ > 0 in this neighborhood. Thus 〈ξ, φ

kφ
〉 = 1. Put ψ = φ

kφ
in

(11). Then from (11) we have

1

min
ψ∈D∗such that N

′

1
(T ∗

t∗
ψ,f)6=0

N
′

1(T
∗
t∗ψ, f)

= 1

under the constraint 〈ξ, ψ〉 = 1. Then the minimum root of the equation

min
ψ∈D∗such that N

′

1
(T ∗

t∗
ψ,f)6=0

N
′

1(T
∗
t∗ψ, f) = 1 (12)

where 〈ξ, ψ〉 = 1 will give the minimum time to reach at ξ. Now, ξ ∈ δC(t∗).
Here t∗ is taken as the minimum root of (12). Obviously t∗ is the minimum
time to reach at ξ. Let ut∗ ∈ Ue(y; t

∗) ⊂ Bt∗ be the optimal control to reach at
ξ ∈ δC(t∗). Thus ξ = Tt∗ut∗ . Hence lη = Tt∗ut∗ .

So in order to reach η in the time t∗ we shall have to apply the control ut∗
l

=
vt∗ where N1(vt∗ , vt∗

1
) = 1

l
> 1 where vt∗ , vt∗

1
∈ Bt∗ . Obviously vt∗ /∈ Ue(y; t

∗).
Now let t∗∗ be the minimum time to reach η by applying an admissible control,
if such a control exists. Then t∗∗ will be greater than t∗, as found above. For
if possible, let t∗∗ ≤ t∗. Obviously t∗ 6= t∗∗ as in that case η ∈ δC(t∗), which is
not true. So, let t∗∗ < t∗. Then by Theorem 3.3, we can write

max
φ∈D∗such that N

′

1
(T ∗

t∗∗
φ,f)6=0

〈ξ, φ〉

N
′

1(T
∗
t∗∗φ, f)

> 1 (13)
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where T ∗
t∗∗φ, f ∈ B∗

t , ξ ∈ δC(t∗).

But by Theorem 3.2, max
φ∈D∗such that N

′

1
(T ∗

t∗∗
φ,f)6=0

〈ξ, φ〉

N
′

1(T
∗
t∗∗φ, f)

= 〈ξ,φ1〉

N
′

1
(T ∗

t∗∗
φ1,f)

=

〈lη,φ1〉

N
′

1
(T ∗

t∗∗
φ1,f)

= l〈η,φ1〉

N
′

1
(T ∗

t∗∗
φ1,f)

= l < 1

which contradicts (13). Consequently, t∗∗ � t∗ and our assertion that t∗∗ > t∗

is correct. Hence we have the following Theorem.

Theorem 4.1. Let TtUe(y; t) = C(t) for any given t, and let η /∈ C(t).
Let ξ ∈ δC(t∗) be the point on the ray through η and t∗ be the minimum time
to reach at ξ. If there exists an optimal control ut ∈ Ue(y; t) to reach η in
minimum time t∗∗, then t∗∗ > t∗.

Proof. Again by applying Theorem 3.3, we have for t = t∗,

max
φ∈D∗such that N

′

1
(T ∗

t∗
φ,f)6=0

〈ξ,φ〉

N
′

1
(T ∗

t∗
φ,f)

= 1,

where T ∗
t∗φ, f ∈ B∗

t , for some ξ ∈ δC(t∗) and for some φ ∈ D∗,

i.e. max
φ∈D∗such that N

′

1
(T ∗

t∗
φ,f)6=0

〈lη, φ〉

N
′

1(T
∗
t∗φ, f)

=
1

l
> 1, where 0 < l < 1.

Evidently, max
φ∈D∗such that N

′

1
(T ∗

t∗
φ,f)6=0

〈η, φ〉

N
′

1(T
∗
t∗φ, f)

is also a non-increasing function

of t. Now if there exists a time t = t
′

, such that max
φ∈D∗such that N

′

1
(T ∗

t
′
φ,f)6=0

〈η, φ〉

N
′

1(T
∗
t
′φ, f)

<

1 and also if max
φ∈D∗such that N

′

1
(T ∗

t
′
φ,f)6=0

〈η, φ〉

N
′

1(T
∗
t
′φ, f)

is a continuous function of t,

then by the intermediate value property we can assert that there exists a time
t = t∗∗, such that

max
φ∈D∗such that N

′

1
(T ∗

t∗∗
φ,f)6=0

〈η, φ〉

N
′

1(T
∗
t∗∗φ, f)

= 1, (14)

Now η ∈ C(t∗∗). For if, η /∈ C(t∗∗), let η
′

∈ δC(t∗∗) be the point on the
ray through η so that η

′

= lη for some l < 1. Hence from (14), we get

max
φ∈D∗such that N

′

1
(T ∗

t∗∗
φ,f)6=0

〈η
′

, φ〉

N
′

1(T
∗
t∗∗φ, f)

= l < 1,

which contradicts

max
φ∈D∗such that N

′

1
(T ∗

t∗∗
φ,f)6=0

〈η
′

, φ〉

N
′

1(T
∗
t∗∗φ, f)

= 1 (Theorem 3.2).
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Hence again from Theorem 3.1 η ∈ δC(t∗∗), and the maximum in (14) will be
attained at ψ which defines the supporting hyper-plane to C(t∗∗) at η.
Therefore we have 〈η, ψ〉 = N

′

1(T
∗
t∗∗ψ, f) where T ∗

t∗∗ψ, f ∈ B∗
t , for some η ∈

δC(t∗∗) and for some ψ ∈ D∗. Since η ∈ δC(t∗∗) there exists a uη ∈ Ue(y; t
∗∗)

such that η = Tt∗∗uη. So
〈Tt∗∗uη, ψ〉 = N

′

1(T
∗
t∗∗ψ, f), or 〈uη, T

∗
t∗∗ψ〉 = N

′

1(T
∗
t∗∗ψ, f).

Hence by Hahn Banach Theorem 3.7, uη can be chosen to be T ∗
t∗∗ψ with

N
′

1(T
∗
t∗∗ψ, f) = 1, where T ∗

t∗∗ψ, f ∈ B∗
t .

Similarly, it can be verified for η ∈ Int C(t).

Theorem 4.2. The sufficient conditions for the existence of minimum time
control for η as in Theorem 4.1 are that

(a) there exists a time t1, such that max
φ∈D∗such that N

′

1
(T ∗

t1
φ,f)6=0

〈η, φ〉

N
′

1(T
∗
t1
φ, f)

< 1 and

(b) max
φ∈D∗such that N

′

1
(T ∗

t φ,f)6=0

〈η, φ〉

N
′

1(T
∗
t φ, f)

is a continuous function of t, where T ∗
t φ, f ∈

B∗
t .

Theorem 4.3. Necessary condition for existence of admissible optimal con-
trol is that min

ψ∈D∗such that N
′

1
(T ∗

t ψ,f)6=0
N

′

1(T
∗
t ψ, f) = 1 where T ∗

t ψ, f ∈ B∗
t under

the constraint 〈η, ψ〉 = 1 will have atleast one positive root.

Proof. See Theorem 4.1.
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