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Abstract 

 

One of the important problems in probability theory is finding the 

distribution of the time of the sojourn of a system (a process) within a 

specified band. With this purpose, we will investigate the semi-Markov 

random processes with positive tendency, negative jumps and delaying 

boundary at zero in this article.The Laplace transformation of the 

distribution of the time of the system sojourn within a given band found. 
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1 Introduction 

 

Many researchers have been engaged in solving this kind of problems. In [4] a 

stepped jump process of a semi-Markov walk with two delay screens at zero and 

at a is constructed. The Laplace transformation of the distribution of the time of 

the system sojourn within a given band and its first and second moments are 

found. The Laplace transformation of the distribution of the duration of the 

sojourn of a process with independent increments within a given band was found 

in [3]. The distribution of the duration of the sojourn of a random walk with a 

discrete distribution within a given band was found in [1]. An asymptotic 

expansion of the distribution of the duration of a sojourn of a random walk with 

normal distribution within a given band was found in [6]. 

 

 

2   Problem statement 

 

Let's assume that in probability space  )(,,  PF  is given the sequence of 

independent, equally distributed and independent themselves positive random 

variables k  and  ,1    , kk . Using these random variables we will derive the 

following semi-Markov random process: 
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)(1 tX  is called semi-Markov random processes with positive tendency and 

negative jumps. 

General form of process semi-Markov random walk with delaying boundary 

is given by A.A.Borovkov [2]. 

If process )(1 tX  is some process without boundary, then process )(tX  with 

delaying boundary at zero is defined following: 

(s))X(0, inf)()( 1
0

1 ts
tXtX


       or     ))(,0( min)()( 1

0
1 inf sX

s
tXtX

t
 . 

Idea of construction of the process semi-Markov random walk is following: 

Let 0)0(1  zX . Process )(tX  is equally to process )(1 tX  until, the 

process )(1 tX  is positive. 

Let 0)(1 tX ; then )(tX  is equally to zero until, the process )(1 tX  will not 

have positive jump. In moment of jump of the process ),(1 tX process )(tX will be 

have jump, such is equally to jump of the process  )(1 tX . 

The obtained process is called a process of a semi-Markov random walk 

with positive tendency, negative jumps and delaying boundary at zero. 

Introduce a random variable   denoting the duration of the sojourn of the 

process )(tX within a band ),( ba , where . 0b0,a,  ab  
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The aim of the present study was to find an explicit form of the Laplace 

transformation of the conditional distributions of the random variable . 
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3    Main Results 

 

Theorem. It holds 

 






za

t

tPzbaK
0

1

 t- dt  e)|,,(
~

 
 

                      








z

by

za

t

yt ytzPdtdeybaK
0

11

 t   P  )|,,(
~

   

       .  P  )|,,(
~

             11

 t

 






 

a

zy

za

zyt

yt ytzPdtdeybaK    

Proof. By the formula of the composite probability, we have 
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Thus we have 
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If we apply the Laplace transformation with respect to t to the both hand 

sides of equation (1) we’ll get the following integral equation 
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Theorem is proofed. 

This integral equation can be solved by the method of successive 

approximations, yet the resulting solution is unfit for applications. We will solve 

this integral equation in special case. 

Corollary.  In the case where the random variables 1  and 1  have an exponential 
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distribution with the parameters   and     respectively, 
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We will get differential equation from this integral equation. For this 

purpose, we will multiply both sides of equation (3) by ze and derive on z. Then 

we will multiply both sides of last equation by 
ze )(  

 and derive on z .Then we 

have following differential equation:     
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By finding   1c  and   2c  from equation (2) we will get the following system 

of algebraic equations:   
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Thus, (9) is a linear dependence equations system, as 
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Then the general solution of differential equation (4) will be as follows 
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This expression is the Laplace transform of the distribution of the duration of the 

sojourn of a system within a band. 

 

 

CONCLUSIONS 

 

In the present study, the explicit form of the Laplace transformation of the 

distribution of the duration oft he sojourn of a system within a band was found. 

The results of the paper may be used in the store control problems with two 

level’s for finding conditional, unconditional distributions of the resource. 
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