Mathematica Aeterna, Vol. 4, 2014, no. 5, 495 - 499

3-Lie algebra A with I(A) = 3, 4 II

BAI Ruipu

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China email: bairuipu@hbu.cn

GAO Yansha

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China email: gaoyansha111@163.com

ZHANG Yinghua

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China email: 15733219156@163.com

Abstract

The structure of derivation algebras is very important, specifically, in the representation theory of *n*-Lie algebras for $n \ge 3$. So in this paper we pay our main attention to the derivation algebras of 3-Lie algebras with generating indices three and four over the complex field F, and give the concrete expression of every derivation.

Mathematics Subject Classification: 17B05, 17D99.

Keywords: 3-Lie algebra, derivation, generating index.

1 Introduction

The concept of *n*-Lie algebra or Filippov algebra was introduced in 1985 ([1]). It is a vector space A endowed with an *n*-ary skew-symmetric multiplication satisfying the *n*-Jacobi identity $\forall x_1, \dots, x_n, y_1, \dots, y_{n-1} \in A$

$$[[x_1, \cdots, x_n], y_2, \cdots, y_n] = \sum_{i=1}^n [x_1, \cdots, [x_i, y_2, \cdots, y_n], \cdots, x_n].$$
(1)

Since the wide applications, in recent years, lots of mathematicians devote themselves to study *n*-Lie algebras. Authors in [2-3] studied the inner derivation algebras and derivation algebras of (n + 1)-dimensional *n*-Lie algebras over the complex field, and according to the structure of inner derivation algebras of (n + 1)-dimensional *n*-Lie algebras, authors in [4] gave the complete classification of (n + 1)-dimensional *n*-Lie algebras.

In this paper, we pay our main attention to study the derivation algebras of 3-Lie algebras with the generating indices three and four over the complex field F.

2. Derivations of 3-Lie algebra A with I(A) = 3, 4

Definition 2.1^[5] Let A be a finite-dimensional 3-Lie algebra. The generating index I(A) of A is the maximum of the dimensions of subalgebras generated by 3 elements of A.

Lemma 2.1^[5] Let A be an m-dimensional 3-Lie algebra with I(A) = 3. Then A is abelian or dim $A^1 = m - 2$. Moreover, for the latter case, there exists a basis $\{e_1, \dots, e_m\}$ of A whose products are given by

$$[e_1, e_2, e_i] = e_i, \ 3 \le i \le m.$$
(2)

Lemma 2.2^[5] Let A be a 3-Lie algebra with I(A) = 4. Then A is isomorphic to one of the following 3-Lie algebras:

(a₁) There is a basis $\{e_1, e_2, x_1, \dots, x_k, \dots, x_m\}$ of A whose products are given as follows: for $1 \le i \le k$, $k+1 \le j \le m, 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$

$$[e_1, e_2, x_i] = x_i + x_{i+k}, [e_1, e_2, x_j] = x_j.$$
(3)

(a₂) There is a basis $\{e_1, e_2, x_1, \dots, x_m, y_1, \dots, y_t\}$ of A with $t \ge 1$ with products

$$[e_1, e_2, x_i] = x_i, \ 1 \le i \le m.$$
(4)

 (a_3) A is the unique simple 3-Lie algebra, that is, there is a basis $\{e_1, \dots, e_4\}$ of A such that

$$[e_2, e_3, e_4] = e_1, \ [e_1, e_3, e_4] = e_2, \ [e_1, e_2, e_4] = e_3, [e_1, e_2, e_3] = e_4.$$
 (5)

 (a_4) There is a basis $\{e_1, \dots, e_4\}$ of A whose products are given by:

$$[e_1, e_2, e_3] = e_3, [e_1, e_2, e_4] = -e_4, \ [e_1, e_3, e_4] = e_2.$$
(6)

(a₅) There is a basis $\{e_1, e_2, x_1, \dots, x_m, y_1, \dots, y_t\}$ of A satisfying

$$[e_1, e_2, x_i] = x_i, [e_1, e_2, y_j] = 3y_j, [x_i, x_k, x_l] = \sum_{s=1}^t c_{ikl}^s y_s, c_{ikl}^s \in F,$$
(7)

where $1 \leq i, k, l \leq m, \ 1 \leq j \leq t$.

(a₆) There is a basis $\{e_1, e_2, x_1, \dots, x_m, y_1, \dots, y_t\}$ of A satisfying: for $k = 1, 2, , 1 \le i, l \le m; 1 \le j \le t$,

$$[e_1, e_2, x_i] = x_i, [e_1, e_2, y_j] = 2y_j, [e_k, x_i, x_l] = \sum_{s=1}^t c_{kil}^s y_s, c_{kil}^s \in F.$$
(8)

Let A be a 3-Lie algebra. If a linear mapping $D: A \to A$ satisfies

$$D[x, y, z] = [Dx, y, z] + [x, Dy, z] + [x, y, Dz], \forall x, y, z \in A,$$
(9)

then D is called a derivation of A. All the derivations of A, is denoted by Der(A), is a linear Lie algebra.

Theorem 2.3 Let A be an m-dimensional n-Lie algebra with I(A) = 3. The derivation algebra is

$$Der(A) = \sum_{i=1}^{2} \sum_{i \neq j, j=1}^{m} F E_{ij} + F(E_{22} - E_{11}) + \sum_{i, j=3}^{m} F E_{ij},$$
(11)

where E_{ij} is an $(m \times m)$ -order matrix with 1 at the position of i^{th} -row and j^{th} -column, and others are zero.

proof By Lemma 2.1, there exists a basis $\{e_1, \dots, e_m\}$ of A whose products are given by Eq.(2). Let $D: A \to A$ be a derivation of A and set

$$De_i = \sum_{j=1}^m a_{ij}e_j, \ a_{ij} \in F.$$

Then by Eq.(2), for arbitrary $3 \le i \le m$,

$$De_i = [De_1, e_2, e_i] + [e_1, De_2, e_i] + [e_1, e_2, De_i] = (a_{11} + a_{22})e_i + \sum_{j=3}^m a_{ij}e_j,$$

we obtain

$$a_{i1} = a_{i2} = 0, 3 \le i \le m; \ a_{11} + a_{22} = 0,$$

then the matrix form of D is

$$D = \sum_{i=1}^{2} \sum_{i \neq j, j=1}^{m} a_{ij} E_{ij} + a_{11} (E_{22} - E_{11}) + \sum_{i, j=3}^{m} a_{ij} E_{ij},$$

we obtain Eq.(11). The proof is completed.

Authors in paper [2-3] studied derivation algebras of the four dimensional 3-Lie algebras. Now we discuss derivation algebras of 3-Lie algebras of the cases $(a_1), (a_2), (a_5)$ and (a_6) in Lemma 2.2.

~

Theorem 2.4 Let A be a 3-Lie algebra with I(A) = 4. If A is the case (a_1) , the derivation algebra is as follows

$$Der(A) = F(E_{11} - E_{22}) + FE_{12} + FE_{21} + \sum_{s=1}^{2} \sum_{j=1}^{m} FE_{sj+2} + \sum_{i=1}^{m} \sum_{j=k+1}^{m} FE_{i+2,j+2},$$
(12)

where E_{ij} is an $((m + 2) \times (m + 2))$ -order matrix with 1 at the position of i^{th} -row and j^{th} -column, and others are zero.

If A is the case (a_2) , then for every derivation D, the matrix form is

$$D = \mu_{11}(E_{11} - E_{22}) + \sum_{i=1}^{2} \sum_{s \neq i, s=1}^{m+t+2} \mu_{is} E_{is} + \sum_{i,j=1}^{m} a_{ij} E_{i+2j+2} + \sum_{k,l=1}^{t} b_{kl} E_{k+m+2l+m+2}.$$
(13)

If A is the case (a_5) ,

$$D = \mu_{11}(E_{11} - E_{22}) + \sum_{i=1}^{2} \sum_{s \neq i, s=1}^{m+t+2} \mu_{is} E_{is} + \sum_{i,j=1}^{m} a_{ij} E_{i+2j+2} + \sum_{k,l=1}^{t} b_{kl} E_{k+m+2l+m+2}$$
(14)

where a_{ij}, b_{kl} satisfy, $1 \le i, j \le m, \ 1 \le k, l \le t$,

$$\sum_{s=1}^{t} c_{ijl}^{s} b_{sr} = \sum_{k=1}^{m} (a_{ik} c_{kjl}^{r} + a_{jk} c_{ikl}^{r} + a_{lk} c_{ijk}^{r}).$$

If A is the case (a_6) ,

$$D = \sum_{k=1}^{2} \sum_{u=1}^{m+t+2} \lambda_{ku} E_{ku} + \sum_{i,j=1}^{m} a_{ij} E_{i+2j+2} + \sum_{v,l=1}^{t} b_{vl} E_{v+m+2l+m+2}$$
(15)

where $\lambda_{ku}, a_{ij}, b_{vl}$ satisfy, $k = 1, 2; 1 \le i, l \le m; 1 \le v \le t$,

$$\mu_{11} + \mu_{22} = 0, \ (\mu_{k1} + \mu_{k2})c_{kil}^s = \sum_{v=1}^m (a_{iv}c_{kvl}^s + a_{lv}c_{kiv}^s).$$

Where E_{ij} is an $((m+t+2) \times (m+t+2))$ -order matrix with 1 at the position of i^{th} -row and j^{th} -column, and others are zero.

Proof In cases (a_1) , let $D: A \to A$ be a derivation of A and

$$De_s = \sum_{j=1}^{2} \lambda_{sj} e_j + \sum_{l=1}^{m} \mu_{sl} x_l, Dx_i = \sum_{j=1}^{2} a_{ij} e_j + \sum_{k=1}^{m} b_{ik} x_k,$$

where $s = 1, 2; 1 \le i \le m; \lambda_{sj}, \mu_{sk}, a_{ij}, b_{ik} \in F.$

Then by Eqs.(3) and (9), for arbitrary $1 \le i \le k, k+1 \le j \le m$, we have

$$Dx_{i} = (\lambda_{11} + \lambda_{22})(x_{i} + x_{i+k}) + \sum_{l=1}^{k} b_{il}(x_{l} + x_{l+k}) + \sum_{l=k+1}^{m} b_{il}x_{l},$$

3-Lie algebra A with I(A) = 3, 4 II

 $\overline{s=1}$

$$Dx_j = (\lambda_{11} + \lambda_{22})x_j + \sum_{l=1}^k b_{jl}(x_l + x_{l+k}) + \sum_{l=k+1}^m b_{jl}x_l$$

we obtain $\lambda_{11} + \lambda_{22} = 0$, $b_{il} = 0$, $a_{i1} = a_{i2} = 0$, $1 \le i \le m$, $1 \le l \le k$. Therefore,

$$D = \lambda_{11}(E_{11} - E_{22}) + \lambda_{12}E_{12} + \lambda_{21}E_{21} + \sum_{s=1}^{2}\sum_{j=1}^{m}\mu_{sj}E_{sj+2} + \sum_{i=1}^{m}\sum_{j=k+1}^{m}a_{ij}E_{i+2,j+2}.$$

The Eq.(12) follows.

 $\overline{s=1}$

In the cases (a_2) , (a_5) and (a_6) , let D be a derivation of A and set

$$De_k = \sum_{j=1}^2 \mu_{kj}e_j + \sum_{l=1}^m \mu_{k+2l+2}x_l + \sum_{l=1}^t \mu_{k+m+2l+m+2}y_l,$$
$$Dx_i = \sum_{s=1}^2 a_{is}''e_s + \sum_{s=1}^m a_{is}x_s + \sum_{s=1}^t a_{is}'y_s, Dy_j = \sum_{s=1}^2 b_{js}''e_s + \sum_{s=1}^m b_{js}'x_s + \sum_{s=1}^t b_{js}y_s$$

where $k = 1, 2; 1 \le i \le m; 1 \le j \le t$. By the similar discussion to the case (a_1) and Eqs.(3), (7), (8) and (9), we obtain Eqs. (13), (14) and (15), respectively. The proof is completed.

ACKNOWLEDGEMENT. This research is supported by NSF (11371245) and NSF (A2014201006) of Hebei Province, China.

References

- [1] V. FILIPPOV, n-Lie algebras, Sib. Mat. Zh., 1985, 26: 126-140.
- [2] R. BAI, ZHANG, H. LI, H. SHI, The inner derivation algebras of (n+1)dimensional n-Lie algebras, Commun Algebra, 2000, 28(6): 2927-2934.
- [3] R. BAI, ZHANG, H. LI, H. SHI, The derivation algebras of (n + 1)dimensional n-Lie algebras, Advances In Mathematics (China), 2003, 32(3): 553-559.
- [4] R. BAI, D. MENG, The representation of simple (n+1)-dimensional n-Lie algebras, Journal of Mathematical Research and Exposition, 2006, 26(4): 659-673.
- [5] R. BAI, W. HAN, C BAI, The generating index of an *n*-Lie algebra J. Phys. A: Math. Theor., 2011, 44, 185201

Received: May, 2014