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ABSTRACT

The aim of this paper is to give recursive and integral equations for ruin probabilities of
generalized risk processes under interest force with homogenous Markov chain claims.
Generalized Lundberg inequalities for ruin probabilities of these processes are derived by
using recursive technique. We first give recursive equations for finite — time probability
and an integral equation for ultimate ruin probability in Theorem 2.1 and Theorem 2.2.
Using these equations, we can derive probability inequalities for finite — time probabilities
and ultimate ruin probability in Theorem 3.1 and Theorem 3.2. The above results give
upper bounds for finite — time probability and ultimate ruin probability.
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1. Introduction

For over a century, there has been a major interest in actuarial science. Since a large
portion of the surplus of insurance business from investment income, actuaries have been
studying ruin problems under risk models with rates of interest. For example, Teugels and
Sundt (1995,1997) studied the effects of constant rate on the ruin probability under the
compound Poisson risk model. Yang (1999) established both exponential and non —
exponential upper bounds for ruin probabilities in a risk model with constant interest force
and independent premiums and claims. Cai (2002a, 2002b) investigated the ruin
probabilities in two risk models, with independent premiums and claims and used a first —
order autoregressive process to model the rates of in interest. Cai and Dickson (2004)
obtained Lundberg inequalities for ruin probabilities in two discrete- time risk process with
a Markov chain interest model and independent premiums and claims.

In this paper, we study the models considered by Cai and Dickson (2004) to the case
homogenous markov chain claims, independent rates of interest and independent
premiums. The main difference between the model in our paper and the one in Cai and
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Dickson (2004) is that claims in our model are assumed to follow homogeneous Markov
chains.
In this paper, we study two style of premium collections. On one hand of the premiums are

collected at the beging of each period then the surplus process {U"}  with initial surplus

u can be written as
Ul =U81+1,)+ X, -Y,, (1)

which can be rearranged as

ug“=u.ﬁ(1+|k)+§n;(xk—Yk)f[(1+|j). )

j=k+1
On the other hand, if the premiums are collected at the end of each period, then the surplus
process {Uff’}m with initial surplus u can be written as
Ur(12) :(Ur(fl)_'_xn )(1+In)_Yn’ (3)
which is equivalent to

U =u.f[(1+ |k)+zn:[xk(1+ |k)—Yk]f[(1+|j).

j=k+1

b b
where throughout this paper, we denote th =1 and 2xt =0 ifa>b.
t=a t=a

We assume that:
Assumption 1.1 UM =U{? =u > 0.
Assumption 1.2 X :{Xn}nZO is sequence of independent and identically distributed non —

negative continuous random variables  with the same distribution
function F(x)=P( X, <X).

Assumption 1.3 1 ={I }

negative continuous random variables with the same distribution function
G(t)=P(I,<t).
Assumption 1.4 Y = {Yn}nZO is @ homogeneous Markov chain such that for any n, Y, takes

Is sequence of independent and identically distributed non —

values in a finite set of non - negative numbers E ={y,,y, ...y, } with Y, =y, and

M
p; = P[Ym+1: yi|Yn = yi},(me N);y,.y; €E where 0< p, sl,Zl: p; =1
J:

Assumption 1.5 XY and | are assumed to be independent.
We define the finite time and ultimate ruin probabilities in model (1) with assumption 1.1
to assumption 1.5, respectively, by

m”(u,yi):P[O(ué%o)

k=1

Uc()l):u,Yo:yi]’ (5)

yO(uy ) =limyP(u,y;) = P(U(ué” <0)

k=1

Ué”zu,vozyi}. (6)

Similarly, we define the finite time and ultimate ruin probabilities in model (3) with
assumption 1.1 to assumption 1.5, respectively, by
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v(u,y, )= P[L”J(

w2 (u,y;) = limy®(u,y; ) = P(U(Ué“ <0)

k=1

u§2>:u,Y0:yij, (7)

Uéz):u,YO:yij. (8)

In this paper, we derive probability inequalities for w(u,y, )and w®(u,y. ). The paper is
organized as follows: in section 2, we first give recursive equations for
wM(u,y,)and ¥ (u,y, )and an integral equation for y“(u,y,)and w'*(u,y, ). We the
derive probability inequalities for y"(u,y,)and *(u,y, )in section 3 by an inductive
approach. Finally, we conclude our paper in Section 4.

2. Integral Equation for Ruin Probabilities
We first give a recursive equation for y"(u,y, ) and an integral equation for ™ (u,y,).
Theorem 2.1. If model (1) satisfies the assumptions 1.1 to 1.5 then forn=1, 2, .

wEuy,) = Z b, {TTwﬁ”(x Ry, JAF(X)dG(t) + j F(h )dG(t)} ©
and

yO(uy,) = Z 3 {TTW“)(X .y, JAF(X)dG(t) + j F(h )dG(t)} (10

where h =y, —u(1+t).

Proof.
Given Y, = y;eE, from (1), we have

UM =UP @+ 1)+ X =Y =u(@+1)+ X, -y,
Let
B={U =uY, =y }.A ={Y, =y},
A ={X, <Y, —u@+ 1)}, A ={X,>Y,—u@+1)}.
Thus, we have
n+1
P(UM <0BNANA)=1= P[U(Ué” <0)BNA mA_szl, (11)
k=1
and
P(UM <0[BNA NA)=0. (12)
Let {X”}nzo ,{Vn}nzo ,{fn}nzo be independent copies of {X } . {Y,} .. {l,} , respectively
with X, = X,.Y, =Y, =y, I, =1,.
Thus, (12) and (2) imply that for
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n+1

[U(U(”<O)BmA mAZJ (U

k=1 k=2

BmAijQJ

(u@+1,)+X, y)H(1+I )+2(x Y. )H(1+| )<o}

p=j+1

_U
7\
= >
|| +
N [l
—

BNA mAzj

=P U{Ug“f[(u J )+i(>€j -, )f[(1+| )<o}

U =u(t+1,)+ Xl—yj,Vo—yj}mBmAQ] (13)

n+1

et =»|Jo

Thus, we have

Uc()l):u’YO :yl}

n+1

'//ﬁii(u,yi)éi n,-P{U(Uk <0) BmAJ}

:ipij{P{Dl(Uk <0)BnA mAi}.P(AiBmAj )+ P{Dl(uk <0)BnA mAz}.P(AZBr\Aj )}-(14)
Fr;n (12), k\;\l/e have h
P{U(U(D <0)\BmA mAi} P(ABmA)_T}dF(x)dG(t)
where h, —k y; —u(l+t)
From (13), we have
P{U(U(l) <0)\BmA mAz} P(AZ\BmA)—TTW ~h,,y;)dF (\)dG ().

k=1

Therefore, (14) is written as
+00 +30 +oo Iy
w(u,y) = zp.,{ [ [w(x=h,y; WF()dG(t)+ | de(x)dG(t)}

—zp.,{ [ [wi2(x=h.y, ME()06(0)+ | F(n)de(t)} (15)

Thus, from the dominated convergence theorem, the integaral equation for w™(u,y,) in

Theorem 2.1 follows immediately by letting n —ooin (15).
This completes the proof [1.

Similarly, the following recursive equations for w{?(u,y,) and an integral equation for
w®(u,y, ) hold.
Theorem 2.2. If model (3) satisfies the assumptions 1.1 to 1.5 then forn=1, 2, ...

v2(u,y,) = Zp.,{Hw,ﬁz’((uH)(lH) Y.y )dF(x)dG(t)+fF(ht)dG(t)}, (16)

0
and
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t//“)(u,y.)=Zp.,{j [ v @(u+x)(L+t)-y,.y, )F(x)dG(t)+ [ F(h, )dG(t)}, (17)
=1 0 h, 0

J

3. Probability Inequality for Ruin Probabilities

To establish probability inequalities for ruin probabilities of model (1), we first proof the
following Lemma.

Lemma 3.1. Let model (1) satisfy assumptions 1.1 to 1.5 and E(Xlk ) <+o(k=12).
Any y. e E | if

E(Y,]Y,=y;)<E(X,) and P(Y,—X,>0Y,=y,)>0 (18)
then, there exists a unique positive constant R, satisfying:
E(eR)y, =y, ) =1 (19)
Proof.
Define
f(t)= E{e‘”l‘xl) Y, = yi}—l;t €(0,+ ).
We have

f (t) = E{e”l Y, = yi}.E(e-txl)—lz g, ().h(t) -1
From Y, is discrete random variables and it takes values in E={y,,Y,,..., Yy, } then

0; (t) =E {etYl

neN*zN\{O}).

M
Y, = yi} =" p,e” has n-th derivative function on (0,+o0) (any
=1

In addition, h(t) = je’txf(x)dx with f(x) = F'(x) satisfying :
0
0<h(t)= j e f (x)dx < j f(x)dx =1
0 0

and 0< kae“xf(x)dxg jxkf(x)dx=E(xk)<+oo(k=1,2).
0 0

This implies that h(t) has n -th derivative function on (0,+oo) with n=1,2. Thus, f,(t)
has n-th derivative function on (0,+oo) with n=1,2 and

f(t) = E{(Y, - X)e Y, = |
O =E{0 - X%, =y | >0.
Which implies that
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f,(t) is a convex function with f,(0)=0 (20)
and
f ) =E{(Y, = X,)|Y, = Vi f =E(Y,]Y, =¥;)-E(X,) <0. (21)
By P((Y,—X,)>0|Y, =Y;)>0, we can find some constant &, >0 such that
P((Yl_xl)>5i >O|Y0 = yi)>O
Then, we can get that
() =E{e® ™)y, =y} -12 E({e“”l)
>e“ P({(Y,— X)) >8], =y} -1.
Imply tI—I>rI3lo f.(t) = +oo. (22)

Y0 = yi}'l{Yl—Xl>5YD_yi})_1

From (20), (21) and (22) suy ra there exists a unique positive constant R; satisfying (19).
This completes the proof [ 1.

Let: R = min{Ri >0: E(eRi (Yi=X;)

Y,=y,)=1(y, )|

Use Lemma 3.1 and Theorem 2.1, we now obtain a probability inequality for w® (u,y,) by
an inductive approach.

Theorem 3.1. If model (1) satisfies assumptions 1.1t0 1.5 E( X, ) <+oo(k =1,2)and (18)

then
foranyu>0and y,. € E,

(. y,) < fE[EY ], (23)
where
t
" .Ie‘Rf’xdF (X)
_1 _ - 0
b= |tr>1§ FO B <1, (24)
Proof.

Firstly, we have

t t t
e™ [e ™" dF (x) e™ [e™dF (x) JdF(x)

= inf—2 > inf —2 =inf 2 =1l —>1= 4 <1.
b 0 F(t) >0 F(t) ©0 F(t) A, B

Forany t >0, we have

41

B t
e [e ™ dF (x)
0

F(t) =

t
ef [ e dF (x)
F(t) !

< p.e® .jeR°XdF(x) (25)

t
< e [e ™ dF(x) < g e™E[e ™ ], (26)
0
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Then, foru>0and y, € E,

‘//1(1) (u, Yi)=

UP =uY,=y)=>"p, [ F(h)dG(®) (27)
=1 0
Thus, from (26) and (27), we have
v (uy) =2 py [ FVAGE) < AE[e ™ |3 py. [ VG
= 0 j=1 0

= BE :e‘R°X1].§: p e fe‘R"“‘l”)dG(t)
0

=L
= BE :e’RDXl].E[eR°Y1 Y, = yi].E[e’R°”(1*'1)J

:ﬁ1 [ AR, (Y,—X;) Y _ y|:| [ e U(l+ll):|:ﬁlE[e_RDU(ml):'- (28)
Under an inductive hypothesis, we assume forany u>0 and y, € E,
wP(U.y,) < BE[e ™ ], (29)

From (28) implies (29) holds with n=1.
For y,eE, x>h and I, >0 , we have

(x+u(1+t) y)(@+1y) xR x+u(1+t)-y;
PO (x=hy,) < BE| ¢ HOne] | gl

eRgtje‘RgxdF(x)

1 __ & 0 R (p—-Xy) *
where g, = 'Qg FO ,E( Y, = yj) land R, 2R, >0.
t t t t
e ™dF(x)  [e*MdF(x) [e*MdF(x)  [e™dF(x)
Any t>0:—2 =2 < =2
F(t) F(t) F(t) e™ F(t)
then
t t
eR°‘je*R°XdF(x) eR°tIe‘R°XdF(x)
=inf —20 <Bt=inf —2 "<
A T AT R0 TATH g
We get Ri[ x+u(l+t)—y; |2 R, [x+u(1+t)—y >0 then
YO (x—hyy,) <Bye kol (30)

Therefore, by Lemma 3.1, (9), (25) and (30), we get
(U, y,) = Zﬁﬁjjwﬂu hwaWNG®+ImeG®}

—+00 +00

< Z b, {I J‘ Be x+u(1+t)fyj]dF(y)dG(t) N J‘ {ﬂleR"[yJU(M)]IGR‘JXdF(X)JdG (t)}

0

" s san h
= 5. pe™” { j eROU‘H)dG(t).[ j e dF (X) + j eR°xdF(x)J}
=1 0 h, 0
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= B> pe™” +j)oe‘&“(l”)dG(t). fe‘R"XdF(x)

jeE 0 0
= ﬁlE[eRo(Yl—Xl) Y, = yiJ.E[e’R"”(l*'l)} _ ﬂlE[efRou(lJrll)].
Hence, for any n=1,2,...(29) hold.

Therefore, (23) follows by letting n — oo in (29).
This completes the proof [ 1.

Remark 3.1. Let A(u,x) = A.E[e ™" | From 1, >0 and f, <1, we have
Au,x) < BE[e™]=pe ™ <e.

Therefore, upper bound for ruin probability in (23) is better than ™"
Similarly, we have Lemma 3.2.
Lemma 3.2. Assume that model (3) satisfies assumptions 1.1 to 1.5 and

E(X))<+oo(k=12).
Any y. e E,if

E[Y, - X,@+1)|Y, =y, |<0and P(Y,-X,@+1,)>0Y,=y,)>0 (31)
Then, there exists a unique positive constant R, satisfying:

E(eRi[Yl—xlmm]) Y. =y ) 1 (32)

Y,=v)=1(y €B)]

Use Lemma 3.2 and Theorem 2.2, we now obtain a probability inequality for w®(u,y,) by
an inductive approach.
Theorem 3.2. If model (3) satisfies assumptions 1.1 to 1.5 E(Xlk ) <+wo(k=12)and

(31) then
Forany u>0and y, € E,

‘//(2) (uy,)=< ﬂz-E[eROY1

Let: ﬁo = mln{Rl >0:E (eRi (V1= X1 (1+14))

Y=y } E[e—ﬁo(u+x1)(1+|1)]

(33)
where
— t —
eRot .Je_RDXdF(X)
_l _ - O
pit=inf b st
(34)
Proof.
Similarly, we have g, <1 and any t >0, we have
— t —
F(t) < B,e™. j e XdF (X). (35)
0

Then, foru>0and y, € E,
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l/jl(Z) (U, yi =

M +00

UP =uY,=vy)=> p; [ F(h)dG(®) (36)
=1 0

Thus, from (35) and (36), we have

h — y;-u(l+t)

w” (U, y;) = Zp.JIF(h)dG(t)<ﬂzZp., | {j v R"XdF(x)}dG(t)

Mo ke [ ﬁo[—x+y 1‘1“)} y h g YyuE)-x(s)
Z J4]e R (x) LG (t) = ﬂZZp” j {j 1t dF(x)}dG(t) (37)
y; —u(l+t)

where h, = 1ot
+

That, for t >0
hy ﬁ‘)w \ Ro yj-u(+t)-x(1+1)] ¢ Ro[ yj—(u+x)(1+t) |
Je O dF( < e dF(x)< [e dF (x) (38)
0 0 0

From (37) and (38), we have

~+00 +00

v () < By Zp.,j N
<BE |:eRoY1 o:yi:|' |:e—Ro(u+Xl)(l+I1):|. (39)

Under an inductive hypothesis, we assume forany u>0 and y, € E,

v Y,) < BE[ €Y, =y, [E[e ] (40)

From (39) implies (40) holds with n=1.
For y,eE,x>h and I, >0, we have

1) ((U + X)(1+t) yJ y ) < ﬂz l: qu Yo _ yj :| E[e—Ro[(u+x)(l+t)—yj+X1)(1+Il)]j|
= ﬂz |: OYl Y, = yj:| E |:e_R;[(U+X)(1“)‘YJ](1+'1)—R;X1(1+I1):|
<BE [ ﬁ Y, = yj} E|:eR;[(u+x)(1+t)yj]R;X1(1+I1)j|

« —R0 1t)-y, R R « —Ro 14t)-y;
_ﬁz [(u+x)( +t) y,]E[eRqu Yo _ y]:|E|:e R0X1(1+I1):| :/Bz e [(urx)(@+t)-y; |

—* t —*
eRotJe—RoxdF (X)
0

where B, =inf

E (eRB (V=X (1+1,))
t>0 F (t)

Y, =yj)=1and Ro R0 >0.

- t - t - t . t .
eR"tje*R"XdF(x) jeR“”)dF(x) jeR“‘*X)dF(x) je*R“dF(x)

Any t>0:—2 =2 < =2
F(t) F(t) F(t) e F(t)

then
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t t

eRet j' | (x) eﬁZtJe’ﬁzxdF (x) l
1 —inf —2 <Br=inf—2 <
S R BT R P
We get Ro [ (u+X)@+1)—y; |>Ro[ (U+x)A+1t)~y; >0 then
pO(U+ XA+t -y, y,) < By L] (41)

Therefore by Lemma 3.2, (16), (35) and (41), we get

AU,y = zp.,{ [ [w@ (0@ -y, y,)4F Ao + | F(h)dG(t)}

=1 0 h 0
+00 +00 Ro (u+x)(l+t) , +00 h 70yj—u(l+t) o
<Zp” j j Be JdF (y)dG @) + [l BJe" ¥ e™dF(x)|dG(t)
0 0
M +00 +00 R (u+x)(]_+t) y +o0 h Re yj—u(1+t)—x(1+t)
=>p; j j Be JaF(dem+ [| g e ¥ dF( ldGM)}  (42)
j=1 0 0

From (38) and (42) we have

~+00 +00

v®(u,y,) < B, Z puJ‘ IeRo 0] ge (G (1)

[,y | o]

Hence, for any n=1,2,...(40) hold. Therefore, (33) follows by letting n — oo in (40).
This completes the proof [1.

Remark 3.2. Let B(u,yi)z,BzE[eR"Yl

B, <1, we have

Y, = yi}E[eR‘)(”*Xl)(“'l)]. From 1,>0,X,>0 and

B(u, yi) :ﬂ2E|:eR0Y1 Y,
<BE |: ROY1:| |:e—RoU—RoX1(l+|1)
— ﬂ e*ﬁou E |:eR0[Y1_X1)(1+|1)]

2

Therefore, upper bound for ruin probability in (33) is better than e .

4. Conclusion

Our main results in this paper, Theorem 2.1 and Theorem 2.2 give recursive equation for
w®(u,y)and w®(u,y,)and integral equation for ' (u,y,)and w®(u,y,); Theorem 3.1

and Theorem 3.2 give probability inequalities for ® (u,y,)and w®(u,y,) by an inductive

approach.

—y. J E [e—ﬁou(ull)—ﬁoxl(lnl)]
I

X0=Xi}

X, = xiJ = B <e ™,
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