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Abstract

Let G be a group and ω(G) be the set of element orders of G. Let
k ∈ ω(G) and sk be the number of elements of order k in G. Let
nse(G) = {sk

∣

∣k ∈ ω(G)}. The groups L2(8) and L2(16) are unique
determined by nse(G). In this paper, we prove that if G is a group such
that nse(G)=nse(L2(2

m)), then G ∼= L2(2
m).
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1 Introduction

A finite group G is called a simple K4-group, if G is a simple group with
|π(G)| = 4. W. J. Shi in [30] pointed out the following problem.

Shi’s Problem. Is the number of simple K4-groups is finite or infinite?
So it is also difficult to known the exact number of simple K4-group L2(3

m).
Thus characterization of L2(3

m) is also an interesting work. For nse, the most
important problem is related to Thompson’s Problem.

In 1987, J. G. Thompson posed a very interesting problem related to alge-
braic number fields as follows (see [32]).
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Thompson’s Problem. Let T (G) = {(n, sn)
∣

∣n ∈ ω(G) and sn ∈nse(G)},
where sn is the number of elements with order n. Suppose that T (G) = T (H).
If G is a finite solvable group, is it true that H is also necessarily solvable?

It is easy to see that if G and H are of the same order type, then

nse(G) = nse(H), |G| = |H|.

Theorem 1.1 Let G be a group and H be one of the following groups.
(1) M is a simple Ki-group, where i = 3, 4 (see [28, 27] respectively);
(2) A12, A13 (see [19, 14]);
(3) A Sporadic simple group (see [10]);
(4) An, n = r, r + 1, r + 2, r + 3, r + 4, r + 5 where r is a prime (see [1]);
(5) Sr, where r is a prime [8];
(6) L2(2

m) with 2m + 1 is a prime or 2m − 1 is a prime (see [26]).
Then |G| = |H| and nse(G)=nse(H) if and only if G ∼= H.

Not all groups can be determined by nse(G) and |G|. Let A,B be two finite
groups, G := A ⋊ B means the semidirect of A,B and A ⊳ G. For example.
In 1987, J. G. Thompson gave an example as followings. Let

G1 = C2 × C2 × C2 × C2 ⋊ A7, G2 = L3(4)⋊ C2,

where bothG1 andG2 are maximal subgroups ofM23. Then nse(G1)=nse(G2)={1,
435, 2240, 6300, 8064, 6720, 5040, 57600}, but G1 ≇ G2.

Comparing the sizes of elements of same order but disregarding the actual
orders of elements in T (G) of the Thompson’s Problem, in other words, it
remains only nse(G), whether can it characterize finite simple groups?

Theorem 1.2 Let G be a group and H be one of the following groups.
(1) Some projective special linear groups (see [29, 33, 19, 5, 4] respectively);
(2) PGL(2,p) [2];
(3) L3(5), U3(5) and U3(7) (see [21], [20] and [23] respectively);
(4) Sr, where r is a prime, r − 2 is a prime and r < 5.108 [8];
(5) M11, M12, M23, M24 [6];
(6) A7, A8 [7];
(7) L5(2) [22];
(8) J1 [9];
(9) S8 [3].
Then nse(G)=nse(H) if and only if G ∼= H.

In this paper, it is shown that the group L2(2
m) also can be characterized

by nse.
We introduce some new notations which will be used in the paper. Let a.b

denote the products of an integer a by an integer b. Let r be a prime. Then we
denote the p-part of the integer n by np. Without confusion, we also denote
the number of the Sylow r-subgroup Pr by nr or nr(G). The other notations
are standard (see [11]).
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2 Preliminary Lemmas

In this section, we give some lemmas which will be used in the proof of the
main theorem.

Lemma 2.1 Let G be a finite group and m be a positive integer dividing
|G|. If Lm(G) = {g ∈ G

∣

∣gm = 1}, then m
∣

∣|Lm(G)|.

Proof. See [13]. �

Lemma 2.2 Let G be a group containing more than two elements. If the
maximal number s of elements of the same order in G is finite, then G is finite
and |G| ≤ s(s2 − 1).

Proof. See [29]. �

Lemma 2.3 With the exceptions of the relations (239)2− 2(13)4 = −1 and
(3)5 − 2(11)2 = 1 every solution of the equation

pm − 2qn = ±1; p, q prime; m,n > 1,

has exponents m = n = 2; i. e. it comes from a unit p− q.2
1

2 of the quadratic
field Q(2

1

2 ) for which the coefficients p and q are primes.

Proof. See [12] and [18]. �
To prove G ∼= L2(2

m), we need the structure of simple K4-groups.

Lemma 2.4 Let G be a simple K4-group. Then G is isomorphic to one of
the following groups:

(1) A7, A8, A9 or A10.

(2) M11, M12 or J2.

(3) One of the following:

(a) L2(r), where r is a prime and r2 − 1 = 2a · 3b · vc with a ≥ 1, b ≥ 1,
c ≥ 1, and v is a prime greater than 3.

(b) L2(2
m), where 2m−1 = u, 2m+1 = 3tb with m ≥ 2, u, t are primes,

t > 3, b ≥ 1.

(c) L2(3
m), where 3m+1 = 4t, 3m−1 = 2uc or 3m+1 = 4tb, 3m−1 = 2u,

with m ≥ 2, u, t are odd primes, b ≥ 1, c ≥ 1.
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(4) One of the following 28 simple groups: L2(16), L2(25), L2(49), L2(81),
L3(4), L3(5), L3(7), L3(8), L3(17), L4(3), S4(4), S4(5), S4(7), S4(9),
S6(2), O+

8 (2), G2(3), U3(4), U3(5), U3(7), U3(8), U3(9), U4(3), U5(2),
Sz(8), Sz(32), 2D4(2) or

2F4(2).

Proof. See [31]. �

Lemma 2.5 If 2 | q, then nse(L2(q))={1, φ(d).q.(q + 1)/2, 1 < d | (q −
1), φ(s).q.(q − 1)/2, 1 < s | (q + 1), q2 − 1}

Proof. It is easy to get from [16], Chapter 2, Theorem 8.2-8.5. �

Lemma 2.6 µ(L2(q)) = {q, (q − 1)/2, (q + 1)/2} with q odd.

Proof. See [17, p. 213]. �

Lemma 2.7 Let G be a finite solvable group and |G| = mn, where m =
pα1

1 · · · pαr

r , (m,n) = 1. Let π = {p1, · · · , pr} and hm be the number of Hall
π-subgroups of G. Then hm = qβ1

1 · · · qβs

s satisfies the following conditions for
all i ∈ {1, 2, · · · , s}:

(1) qβi

i ≡ 1 (mod pj) for some pj.

(2) The order of some chief factor of G is divided by qβi

i .

Proof. See [24, Theorem 9.3.1]. �

Lemma 2.8 Let G be a finite group and p ∈ π(G) be odd. Suppose that P
is a Sylow p-subgroup of G and n = psm with (p,m) = 1. If P is not cyclic
and s > 1, then the number of elements of order n is always a multiple of ps.

Proof. See [25]. �

Let G be a group such that nse(G)=nse(L2(3
m)), and sn be the number of

elements of order n. By Lemma 2.2 we have that G is finite. We note that
sn = kφ(n), where k is the number of cyclic subgroups of order n. Also we
note that if n > 2, then φ(n) is even. If m ∈ ω(G), then by Lemma 2.1 and
the above discussion, we have

{

φ(m) | sm

m |
∑

d |m sd
(1)
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Remark 2.9 If pk ∈ ω(G) and |P | = pk where P is a Sylow p-subgroup of
G, then spk = φ(pk).np. If |P | > pk, then by Lemma 2.8, spk = pk.t for some
non-negative integer t. In particular, if k > 2, then t is either a multiple of p or
coprime to p. On the other hand, sp = φ(p).np, in this case, (np, p) = 1. Hence
if p ∈ π(G), we consider the prime divisor of π(tp′) where p′ = π(t) − {p},
which possibly lies in π(G). So whether the Sylow p-subgroup of G is cyclic or
not, we can only consider when the p-subgroup is cyclic of order p.

Lemma 2.10 Let G be a group and x, y, and p ≥ 3 are different primes. If
sx, sy ∈nse(G)=nse(L2(3

m)) = {1, φ(d).3m.(3m+1)/2, 1 < d | (3m−1)/2, φ(s).3m.(3m−
1)/2, 1 < s | (3m + 1)/2, (3m)2 − 1} and sx 6= sy where m satisfies

{

3m + 1 = 4t,

3m − 1 = 2uc
(2)

or
{

3m + 1 = 4tb,

3m − 1 = 2u
(3)

with m ≥ 2, u, t are odd primes, b ≥ 1, c ≥ 1 and {p} j π(sx) ∩ π(sy), then
if x, y ∈ π(G), there is an element of order p of G.

In the proof of the Lemma, we always assume that the largest prime belongs
to π(G). If c = 1, then we assume that u ∈ π(G); if c > 1, then we assume
that t ∈ π(G).

Proof. Let
{

3m + 1 = 4t,

3m − 1 = 2uc.

Then we consider the following two cases.
If c = 1, then u > t > 3 > 2 and 3m−1

2
= u is a prime. Since (u, su) = 1,

then su = φ(d).3m.(3m + 1)/2, with 1 < d | (3m − 1)/2. In this case, s | 2.t.

• Let s = 2. Then by Lemma 2.1, s2 = 3m.(3m − 1)/2 is the only
odd number of nse(G) and so 2 ∈ π(G). Since (t, st) = 1, then st =
φ(t).3m.(3m − 1)/2. Since (3m + 1, 3m − 1) = 2, then 3 ∈ π(s2) ∩ π(su).
So we can assume that 3 | nu or 3 | φ(u).

* Let 3 | nu. Then since u ∈ π(G), 3 ∈ π(G), this is the desired
result.

* Let 3 | φ(u). Since u = 3m−1
2

is a prime, then 3 | 3m−3
2

= 3(3m−1 −
1)/2. Since (3m+1, 3m− 1) = 2 and (3m− 1, 3m−1− 1) = 2, we can
assume that 2 or t ∈ π(3m−1−1). If t | 3m−1−1, then 3m = 3+3kt
for some integer k, but the equation has no solution since t > 3
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is a prime. Hence 3m−1 − 1 = 2a for some integer a. By Lemma
2.3, m − 1 = 2 and a = 3. So 33 + 1 = 4t, t = 7 and u = 13. It
follows that nse(G)=nse(L2(3

3)), and from [4], the prime 3 also, in
this case, belongs to π(G).

• Let s = t. Then by Lemma 2.6, 2.u 6∈ ω(G). It follows that the Sylow
2-subgroup of G acts fixed point freely on the set of elements of order u
and |P2| | su. Similarly t.u 6∈ ω(G) and |Pt| | su. Hence |G| | 3m.(3m +
1).(3m − 1). On the other hand,

∑

sk∈nse(G)

sk = 3m.(3m − 1).(3m + 1)/2 ≤ |G| | 3m.(3m + 1).(3m − 1). (4)

Since
∑

sk∈nse(G) sk is odd, then the inequality has no solution in N.

If c > 1, then t > u > 3 > 2 and 3m+1
4

= t is a prime. Since (t, st) = 1,
then st = φ(t).3m.(3m − 1)/2, s2 = 3m.(3m − 1)/2 and 2 ∈ π(G). Since
3, u ∈ π(s2) ∩ π(st). Then we consider the following two cases: 3 | nt or
3 | φ(t); u | nt or u | φ(t).

Case a. 3 | nt or 3 | φ(t)

• Let 3 | nt. Then since t ∈ π(G), 3 ∈ π(G).

• Let 3 | φ(t). Then 3 | t − 1. It follows that there is a Frobenius group
of order 3.t with a Frobenius kernel of order t and a Frobenius comple-
ment of order 3. It follows that there is an element of order u.t which
contradicts Lemma 2.6. Therefore 3 ∤ t− 1.

Case b. u | nt or u | φ(t).

• Let u | nt. Then since t ∈ π(G), u ∈ π(G).

• Let u | φ(t). Then u | t − 1. It follows that there is a Frobenius
group of order u.t with a Frobenius kernel of order t and a Frobenius
complement of order u. It follows that there is an element of order 3.t
which contradicts Lemma 2.6. Therefore u ∤ t− 1.

Similarly as the case “3m + 1 = 4t, 3m − 1 = 2uc” we also can do this case
“3m + 1 = 4tb, 3m − 1 = 2u”.

This completes the proof of the Lemma. �
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3 Main Results and its Proof

In this section, we will give the proof of the main theorem.

Theorem 3.1 Let G be a group and r a prime. Then G ∼= L2(3
m),

{

3m + 1 = 4t,

3m − 1 = 2uc

or
{

3m + 1 = 4tb,

3m − 1 = 2u

with m ≥ 2, u, t are odd primes, b ≥ 1, c ≥ 1 if and only if nse(G)=nse(L2(3
m)).

Proof. If G ∼= L2(3
m), then from Lemma ??, nse(G)=nse(L2(3

m)).
So we assume that nse(G)=nse(L2(3

m)) with 3m + 1 = 4t, 3m − 1 = 2uc.
We consider c = 1 and c > 1.

• Case a. c = 1.

Then u > t > 3 > 2.

If u, t, 3, 2 ∈ π(G), su = φ((3m−1)/2).3m.(3m+1)/2, st = φ(t).3m.(3m−
1)/2, s3 = (3m)2 − 1 and s2 = 3m.(3m − 1)/2, 2 ∈ π(G).

If t ∈ π(G) and since 3, u ∈ π(st) ∩ π(s2), then by Lemma 2.10, 3, u ∈
π(G).

Therefore we consider the following subcases: π(G) = {2, u} and π(G) =
{2, 3, u, t}.

* Subcase a. π(G) = {2, u}.

Since 3 ∈ π(s2) ∩ π(su), then by Lemma 2.10, 3 ∈ π(G), a contra-
diction.

* Subcase b. π(G) = {2, 3, u, t}.

By Lemma 2.6, 2.3 6∈ ω(G). It follows that the Sylow 2-subgroup of
G acts fixed point freely on the set of elements of order 3, |P2| | s3
and |P3| | 3

m. Similarly 3.u 6∈ ω(G) and |Pu| | s3, in particular
|Pu| = u; 3.t 6∈ ω(G) and |Pt| | s3.

Therefore we can assume that |G| | 2m3n.tp.uq for some non-negative
integers m,n, p, q. On the other hand,

3m.(3m − 1)(3m + 1)

2
≤ |G| ≤ 3m.(3m − 1).(3m + 1)

and so |G| = 3m.(3m − 1).(3m +1)/2 or |G| = 3m.(3m − 1).(3m+1).
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In the following, we first prove that there is no group such that
|G| = 3m.(3m − 1).(3m + 1) and nse(G)=nse(L2(3

m)), then from
[27], get the desired result.

G is insoluble. Assume that G is soluble. Since su = φ((3m −
1)/2).3m.(3m + 1)/2, then nu = 3m.(3m + 1)/2 = 3m.4t. By Lemma
2.7, 22 ≡ 1 (mod u), a contradiction. So G is insoluble.

There is a normal series

1⊳K ⊳ L⊳G

such that L/K is a simple Ki-group with i = 3, 4.

Let L/K be a simple K3-group. Then from [15], L/K is isomorphic
to one of the following groups: A5, A6, L2(7), L2(8), L2(17), U3(3),
L3(3), U4(2).

It is easy to prove that L/K is not a simple K3-group. For instance,
assume that L/K ∼= L2(17). Then u = 17 and so 3m − 1 = 2.17.
The equation has no solution in N.

Let L/K be a simple K4-group. Similarly to the above case, we can
rule out the groups which are isomorphic to (1)(2)(4) of Lemma 2.4.
Therefore we consider Lemma 2.4(3) with the following three cases.

(a) L/K ∼= L2(r), where r is a prime and r satisfies

r2 − 1 = 2a.3b.vc

with a ≥ 1, b ≥ 1, c ≥ 1, v > 3 is a prime.

Since r is the largest prime divisor of L/K. Hence u = (3m−1)/2 =
r. That is |L2(r)| | |G|, namely,

(((3m − 1)/2)2 − 1).(3m − 1)/4 | 3m.(3m − 1).(3m + 1).

It follows that
3m − 3

16
| 3m,

a contradiction since 2 | 3m − 3 and 22 ∤ 3m − 3.

(b) L/K ∼= L2(2
m), where 2m − 1 = u′, 2m + 1 = 3t′b

′

with m ≥ 2,
u′, t′ are primes, t′ > 3, b′ ≥ 1. Then u = u′. It follows that

|L2(2
m)| | |G|,

namely,

2m(2m − 1)(2m + 1) | 3m.(3m − 1).(3m + 1),

a contradiction.
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(c) L/K ∼= L2(3
m), where

{

3m + 1 = 4t′,

3m − 1 = 2u′c′

or
{

3m + 1 = 4t′b
′

,

3m − 1 = 2u′

with m ≥ 2, u′, t′ are odd primes, b′ ≥ 1, c′ ≥ 1.

Let G = G/K and L = L/K. Then

L2(3
m) ≤ L ∼= LCG(L)/CG(L) ≤ G/CG(L) = NG(L)/CG(L) ≤ Aut(L)

Set M = {xK | xK ∈ CG(L)}, then G/M ∼= G/CG(L) and
so L2(3

m) ≤ G/M ≤Aut(L2(3
m)). Therefore G/M ∼= L2(3

m) or
G/M ∼= SL2(3

m).

If G/M ∼= L2(3
m), then |M | = 2 and M = Z(G). It follows that

there is an element of order 2.u, a contradiction.

If G/M ∼= SL2(3
m), then M = 1. But nse(SL2(3

m)) 6=nse(G), we
also rule out this case.

Therefore |G| = 3m.(3m−1).(3m+1)/2 = |L2(3
m)|. By assumption,

nse(G)=nse(L2(3
m)). So by [27], G ∼= L2(3

m).

• Case b. c > 1.

Then t > u > 3 > 2. Similarly as “c = 1”, we have G ∼= L2(3
m).

Also we can do the case “3m +1 = 4tb, 3m − 1 = 2u” as the case “3m +1 =
4t, 3m − 1 = 2uc”, so we have G ∼= L2(3

m).
This completes the proof of the theorem. �
ACKNOWLEDGEMENTS. The object is supported by the Depart-

ment of Education of Sichuan Province (Grant No: 13ZA0119) and by the
Opening Project of Sichuan Province University Key Laborstory of Bridge
Non-destruction Detecting and Engineering Computing (Grant No: 2013QYJ02)
and by the Scientific Research Project of Sichuan University of Science and
Engineering (Grant No: 2014RC02). The authors are very grateful for the
helpful suggestions of the referee.

References

[1] A. K. Asboei. A new characterization of alternating groups.



778 Y. Yong and H. Zhang

[2] A. K. Asboei. A new characterization of PGL(2, p). J. Algebra Appl.,
2013, 12(7):1350040 (5 pages).

[3] A. K. Asboei. A new characterization of S8. Novi Sad J. Math., 2013,
43(1):33–39.

[4] A. K. Asboei. A new characterization of PSL(2,27). Bol. Soc. Paran.
Mat. (2), 2014, 32(1): 43–50.

[5] A. K. Asboei and S. S. S. Amiri. A new characterization of PSL(2,25).
Int. J. Group The., 2012, 1(3):15–19.

[6] A. K. Asboei, S. S. S. Amiri, A. Iranmanesh, and A. Tehranian. A new
characterization of A7 and A8. An. Şt. Univ. Constanţa. to appear.
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