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1 Introduction

Let I C R be an interval and ¢ be a positive number. Following Polyak [16]
a function f: I — R is called strongly convex with modulus c if

fltay + (L= t)xs) < tf (21) + (1= 8) f(22) — ct(l — t)(x1 —22)* (1)

for all 1,29 € I and t € [0,1]. f is called strongly concave with modulus ¢
if —f is strongly convex with modulus ¢. Many properties and applications
of strongly convex functions can be found in the literature (see, for instance,
9], [12], [17], [15], [22]). Recently Huang [5], extended the definition (1) of
strongly convex function to set-valued maps. He used such maps to investigate
error bounds for some inclusion problems with set constraints. Some further
properties of strongly convex set-valued maps can be found in [6]. Strongly
concave set-valued maps were investigated in [8].

The aim of this paper is to present counterparts of the integral and discrete
Jensen inequalities and the Hermite-Hadamard double inequalities for strongly
convex set-valued maps.

2 Preliminaries

Throughout this paper Y be a Banach space, B be a closed unit ball in Y,
I C R be an open interval and ¢ be a positive constant.

Denote by n(Y) the family all nonempty subsets of Y and by cl(Y) the
family of all closed nonempty subsets of Y. A set-valued map F' : I — n(Y)
is called strongly convexr with modulus c if

tF(x1) + (1 —t)F(zg) + ct(1 — t)(zy — 29)>B C F(tx; + (1 —t)xzs)  (2)

for all 1,29 € I and t € [0,1] (see [5], [6]). The usual notion of convex set-
valued maps corresponds to relation (2) with ¢ =0 (cf. e.g. [2], [3], [11], [20],
[21]).

Clearly, the definition of strongly convex set-valued maps is motivated by
that of strongly convex functions. The following lemma characterizes strongly
convex set-valued maps with values in ¢/(R) and shows connections between
conditions (1) and (2) (cf. [7] where analogous result for convex set-valued
maps is given).

Lemma 2.1 A set-valued map F : I — cl(R) is strongly convex with mod-
ulus ¢ if and only if it has one of the following forms:
a) F(z)=[fi(z), f2(z)], z€l,
b) F(z)=[fi(z),+o0), z€I,
c) F(x)=(—o0, fo(x)], x€l,
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d) F(z)=(—00,+0), ze€l,
where fi1 : I — R is strongly convexr with modulus ¢ and fs : I — R is strongly
concave with modulus c.

Proof. The “if” part is clear. To prove the “only if” part note first that
by (2) the values of F' are convex. Moreover, if F'(x) is bounded from above
(from below) for some xy € I, then F(z) is bounded from above (from below)
for every x € I. Define

fi(z) =inf F(z), if F(z) isbounded from below
and
fo(x) =sup F(z), if F(x) is bounded from above.

Then by the strong convexity of F' its follows that f; is strongly convex
with modulus ¢ and f, is strongly concave with modulus c¢. Since the values
of F' are closed and convex, the result follows. O

3 The Jensen inequalities

It is well know that if a function f : I — R is convex, then if satisfies the
integral Jensen inequalities

f( / w(w)du) < [ fotein 3)

for each probability measure space (X, ) and all p-integrable functions
p: X —1.

In [9] the following version of the Jensen inequality for strongly convex
functions was proved:

f( / w(w)du) < [ renaun-c [ (o - mds (1)

where m = [, ¢(x)dp. A counterpart of (3) for set-valued maps was obtained
in [7]. The next Theorem gives a counterpart of (4) for set-valued maps.

Throughout this paper the integral of a set-valued map is understood in
the sense of Aumann, i.e. it is the set of integrals of all integrable selections
of this map.

Theorem 3.1 Let (X,%, 1) be a probability measure space. If F : I —
cl(Y) 1s strongly convex with modulus c, then for each square-integrable func-
tion o : X = 1

[ Feo@aute [ (@(fﬁ)-m)zduBcF( / @(fﬁ)du), 5)

where m = [, (x)dp.
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Proof. The proof is divided into two steps. First, we assume that ¥ = R.
Then, by Lemma 2.1, F' has one of the forms a)- d). Assume that F(x) =
[fi(z), fa(x)], x € I (the proof in the remaining cases is similar). Let h: X —
R be a p-integrable selection of F' o . Then, by the Jensen inequality for
strongly convex function (4), we have

h (/XS”(:’:)‘Z“) < /fl du—C/X(w(x)—mfdu

< [ tlandn=c [ (o) —m)dy

X

and
fa (/Xw(x)du) > /f2 du+c/X(gp(;p)_m)2du
=z /X(h(x))dﬂ‘i‘c/x(go(x)—m)Qd,u,
Hence

J e [ (ola) = m?an [—LllcF( / @(x)du)-

Consequently

J P c [ (ola) - m?an [—Ll]cF( / w(x)du),

which finishes the proof in the case Y = R.

Now, assume that Y is an arbitrary Banach space. Take a nonzero continuous
linear functional y* € Y* and considerer the set-valued map x — y*(F(x)),
x € I. This set-valued map is strongly convex with modulus c||y*|| and has
closed values in R. Therefore, by the previous step,

[l [ ete) = m dul-ral ey (#( [ etin) ). o)

Fix a point b € B and take an arbitrary p-integrable selection h of F' o ¢.
Then, by (6) and the fact that

[ v twiendn =y ( / h(x)du),

v ([ e [ (o) - mp* o)
e [ wendn+ iyl [ (o) —mdul-1.1
(o)

we get
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Since this condition holds for arbitrary y* € Y* and the set y*(F ( [ (¢(z)dw))
is convex closed, by the separation theorem (see [18], Corollary 2.5.11) we ob-

" [ rwn+e [ <go<x>—m>2dubeF( / @(x)du)

Thus
| Fe@mdte [ @) - midus e ( / w(x)du) ,

which was to be proved. O

Now, assume that X = I, p(z) = z for x € I, and z4,...,x, € I are
distinct points. Moreover, assume that p is a probability measure concentrate
at x1,...,T,, that is pu(x1) =t >0,i=1,...,nand t; +---+t, = 1. Then

m = /X Pl =3t /X () = ) dp = 3t — m)?
and .
/X F(p(e))di = Yt (w1,

Therefore, as the consequence of Theorem 3.1, we get the following discrete
Jensen inequality for strongly convex set-valued maps.

Corollary 3.2 If f: I — cl(Y) is strongly convex with modulus ¢, then

for alln € N, z1,...,2, € I, t1,...,t, > 0 withty +---+1t, = 1 and
m=tx;+- - +t,x,.

4 The Hermite-Hadamard inequality

It is known that if a function f : I — R is convex then it satisfies the Hermite-
Hadamard double inequality

f<a;b>ﬁbia/abf(x)dxgw, ab€l, a<b. (7)
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The following version of the Hermite-Hadamard inequality for strongly con-
vex functions was recently proved in [9]:

F(450) + - op < s [ e < LI b ey

forall a,be I, a <b.

In this section we present a counterpart of the above inequality (8) for
strongly convex set-valued maps. The Hermite-Hadamard inequality for con-
vex set-valued maps was obtained in [19] (cf. also [14], [10]) .

Theorem 4.1 If a set-valued map F : I — cl(Y) is strongly convex with
modulus ¢, then

b a

bia/a F(:)s)d:)s+1—02(a—b)2BCF< ;—b) (9)
and

M +%(a—b)2B c bia/a F(x)dx (10)

forall a,be I, a<b.
Proof. Condition (9) follows from Theorem 3.1. To show this take X =

[a,b], p(z) = z,z € [a,b] and p = ﬁ)\, where \ is the Lebesgue measure on
R. Then

e fotoa=t3t (o) 5 (2).

[ tet@) = mau=5a=pp and [ Fpa)de == [ Pl

Substituting these equalities to (5) we get (9).

To prove condition (10) take arbitrary z = “3* + £(a — b)*3, where u €

F(a),v € F(b) and 8 € B. Considerer the function f : [a,b] — Y defined by

= b_xu—i-x_aijc(b—x)(:c—a)ﬁ.

f@) =y

By the strong convexity of F' we get

b—x r—a

b—x T—a b—xx—a 9 B
—I—cb_ab_a(b—a) BCF(b_aa+b_ab> = F(z),

——Fa)t —F(b)

flz) €
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which means that f is a selection of F'.
Simple calculations gives

/ab f(z)dz = (b— a) {u -5 vy écﬁ(a - b)?} — (b—a)z.

Hence
1

b 1 b
Z:b—a/a f(a?)dxeb_a/a F(x)dx,

which finishes the proof. O

5 The converse of Hermite-Hadamard theo-
rem

It is known that if a continuous function f : I — R satisfies the left or the
right-hand side inequality in (7), then it is convex (cf. e.g. [2], [4], [13]). An
analogous result holds also for strong convexity: If f : I — R is continuous
and satisfies the left or the right-hand side inequality in (8), then it is strongly
convex with modulus ¢ (see [9]). In this section we present a set-valued coun-
terpart of that result. Recall that a set-valued map F' : I — n(Y) is said to
be continuous at a point x if for every neighbourhood V' of zero in Y there
exist a neighbourhood U of zero in R such that

F(z) C F(xg)+V and F(xg) C F(z)+V

forall z € (g +U) N 1.
In what follows we assume that Y is a separable Banach space and denote

by beel(Y) the family of all bounded convex closed and non-empty subsets of
Y.

Theorem 5.1 If F': I — becl(Y') is continuous and satisfies

1 b c 9 a+b
b_a/aF(:c)dx+E(a—b)BCF< ) abel, a<b  (11)
or
b
wﬂL%(a—b)zBCb_a/F(x)dx, a,bel, a<bdb, (12)

then F' 1s strongly convex with modulus c.
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Proof. Assume that F' satisfies (11) (if F' satisfies (12) the proof is analo-
gous). Define G(z) = F(x) + cx®?B, x € I. Then

I I I
/G(:c)d:c = /F(x)dx—l—— cx’ Bdx

b—a b—a b—a J,

1 b 2 2
= b—a/a F(x)dx—l—c%B

_ /bF(x)da:—l—c(a_b)zB+c(a+b>2B

b—a 12 2

< F(5) () B-e(ty),

Thus G satisfies the Hermite-Hadamard-type inclusion and it is also contin-
uous. Therefore, by [10, Theorem 8], G is convex. Hence, using the definition
of G and the characterization of strongly convex set-valued maps given in [6],

we obtain that F is strongly convex with modulus c¢. This finished the proof.
O

References

[1] J. Benoist and N. Popovici, Generalized convex set-valued maps, J. Math.
Anal. Appl. 288 (2003), 161-166.

[2] M. Bessenyei and Zs. Péles, Characterization of convexity via Hadamard’s
inequality, Math. Inequal. Appl. 9/1 (2006), 53-62.

(3] J. M. Borwein, Multivalued convezity and optimization: A unified ap-
proach to inequality and equality constrains, Math.Programming 13
(1977), 183-199.

[4] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-
Hadamard Inequalities and Applications, RGMIA Monographs, Victoria
University, 2002. (ONLINE: http://rgmia.vu.edu.au/monographs/).

[5] H. Huang, Global error bounds with exponents for multifunctions with set
constraints, Communications in Contemporary Math. 12 (2010), 417-435.

[6] H. Leiva, N. Merentes, K. Nikodem and J. L. Sanchez, Strongly convex
set-valued maps, J. Glob. Optim. 57 (2013), 695-705.

[7] J. Matkowski, K. Nikodem, An integral Jensen inequality for conver mul-
tifunctions, Results Math. 26 (1994), 348-353.



Jensen and Hermite-Hadamard inequalitiesfor strongly convex set-valued maps987

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

O. Mejia, N. Merentes, K. Nikodem, Strongly concave set-valued maps,
Mathematica Aeterna 4 (2014), 477-487.

N. Merentes and K. Nikodem, Remarks on strongly convex functions,
Aequationes Math. 80 (2010), 193-199.

F.-C. Mitroi, K. Nikodem, Sz. Wasowicz, Hermite-Hadamard inequalities
for convex set-valued functions, Demonstratio Math. 46 (2013), 655-662.

K. Nikodem, On midpoint convex set-valued functions, Aequationes Math.
33 (1987), 46-56.

K. Nikodem and Zs. Pales, Characterizations of inner product spaces by
strongly convexr functions, Banach J. Math. Anal. 5 (2011), no. 1, 83-87.

J. E. Pecari¢, F. Proschan, Y. L. Tong, Convex Functions, Partial Order-
ings, and Statistical Applications, Acad. Press,Inc., Boston, 1992.

B. Piatek, On convexr and *-concave multifunctions, Ann. Polon. Math.
86 (2005), 165-170.

E. Polovinkin, Strongly convex analysis, Sbornik Mathematics 187 (1996),
259-286.

B. T. Polyak, Ezistence theorems and convergence of minimizing sequences
in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72—
75.

T. Rajba, Sz. Wasowicz, Probabilistic characterization of strong convex-
ity, Opuscula Math. 31 (2011), 97-103.

S. Rolewicz, Functional Analysis and Control Theory. Linear Systems,
PWN - Polish Scientific Publishers & D. Reidel Publishing Company,
Dordrecht/Boston/Lancaster/Tokyo, 1987.

E. Sadowska, Hadamard inequality and a refinement of Jensen inequality
for set-valued functions, Results Math. 32 (1997), 332-337.

A. Sterna-Karwat Convezxity of the optimal multifunctions and its conse-
quences in vector optimization, Optimization 20 (1989), 799-808.

L. Thibault, Continuity of measurable convexr multifunctions. In: Multi-
functions and integrands. Lecture Notes in Math. 1091, Springer—Verlag,
Berlin, 1984, 216-224.

J. P. Vial, Strong convexity of sets and functions, J. Math. Economy 9
(1982), 187-205.

Received: November, 2014



