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Abstract 

 

The aim of this paper is to study the effect of temperature, magnetic field, 

relaxation time and initial stress on the reflection of plane SV-waves at the free 

surface of an isotropic elastic half-space under GL-theory. It is found that when 

SV-wave is incident on the free surface of the above medium, reflected SV-wave, 

reflected P-wave and a reflected thermal wave is obtained. We find that P-wave is 

affected due to the presence of thermal and magnetic field whereas SV-wave 

remains unaffected which is in accordance with the GL-theory since the 

temperature and magnetic field in an infinite space results only in irrotational 

changes. The effect of temperature, magnetic field, relaxation time and initial 

stresses on reflection coefficients of incident SV-wave are plotted under certain 

practical assumptions. 
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1 Introduction 

The modelling of surface waves dispersion effects has become of growing interest 

to geotechnical engineers and geophysicists. The seismic waves usually studied in 

seismology and seismic surveying are those produced by earthquakes, explosions, 

or impacts. These waves are complex vibrations of limited duration having the 

nature of an impulse. The problem of propagation velocity of these complex 

vibrations requires additional research. When the wavelength of the harmonic 

component is significantly small compared with the heterogeneity, such as 

thickness of layers, the oscillations are propagated following the laws of 

geometrical optics. By knowing the reflection and refraction, the magneto-thermal 

elastic plane waves are the useful source for imagining the interior of the Earth. 

According to the conventional heat conduction theory, the thermal disturbances 

travel at infinite velocities. However, from the physical point of view, the above 

concept is unrealistic in the situation of very low temperature near absolute zero. 

The hyperbolic equations of motion are applicable in such cases and the elastic 

disturbances propagate with finite speeds. Thus, generalized thermoelasticity 

theories are proposed to examine modified thermoelastic models involving a 

hyperbolic type of heat equation.  

Problem related to magneto-thermoelastic plane wave deals with the 

interactions among strain, temperature, and electromagnetic fields in transversely 

isotropic and anisotropic medium has many applications in geophysics, optics, 

electrical power engineering and seismology. Shekhar and Parvez [1] purposed 

plane waves propagating in transversely isotropic dissipative half space under the 

effect of rotation, magnetic field and stress. Othman and Song [2] discussed 

reflection of magneto-thermo-elastic wave by using generalized theory of 

elasticity. Mehditabar et al. [3] investigated magneto -thermo-elastic functionally 

graded conical shell. Othman [4] studied electro-magneto-thermoelastic thermal 

shock plane waves for a finite conducting half-space. Niraula and Noda [5] 

purposed non-linear electro-magneto-thermo-elasticity by deriving material 

constants. Niraula and Wang [6] studied the property of magneto-electro-elastic 

material with a penny-shaped crack subjected to temperature loading. 

Kaur and Sharma [7] discussed reflection and transmission of 

thermoelastic plane waves at liquid-solid interface. Fractional order generalized 

electro-magneto-thermo-elasticity was given by Ya et al. [8]. Propagation of plane 

waves at the interface of an elastic solid half-space and a microstretch 

thermoelastic diffusion solid half-space was investigated by Kumar et al. [9].  

Chakraborty [10] discussed reflection of plane elastic waves in half-space 

subjected to temperature and initial stress. Singh and Yadav [11] discussed the 

reflection of plane waves in a rotating transversely isotropic 

magneto-thermoelastic solid half-space. Singh and Bala [12] purposed the 

reflection of P and SV waves from the free surface of a two-temperature 

thermoelastic solid half-space.  

This paper discusses the problem of reflection of magneto-thermoelastic 
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SV-waves under initial stress in transversely isotropic solid half space. Biot’s 

equations are modified in terms of Green and Lindsay’s theory of thermoelasticity. 

The governing equations are solved in light of modified heat equation to obtain 

reflection coefficients for P-wave, thermal wave and SV-wave. Results are plotted 

with MATLAB software to show the effect of temperature, magnetic field, 

relaxation time and initial stresses on the reflection of incident SV-wave.  

 

2 Governing equations 

The governing equations of linear, isotropic and homogenous 

magneto-thermoelastic solid with initial stress are 

 

a. The stress-strain-temperature relation: 

 

( ) e 2 ( ) ,ij ij ij PP ij ij ij

T

s P e
k


                                    (1) 

 

where, 
ijs are the components of stress tensor, P is initial pressure, 

ij  is the 

Kronecker delta, 
ij  are the components of small rotation tensor,  ,  are the 

counterparts of Lame parameters, 
ije  are the components of the strain tensor, α is 

the volume coefficient of thermal expansion, Tk  is the isothermal 

compressibility, 0   is small temperature increment,   is the absolute 

temperature of the medium, 0  is the reference uniform temperature of the body 

chosen such that 
0

1.



 

 The displacement-strain relation: 
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where, ui are the components of the displacement vector. 

 

The small rotation-displacement relation: 
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where, ui are the components of the displacement vector. 
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b. The modified Fourier’s law: 

 

*i i

i

h a h K
x


 


                                                 (4) 

 

where, K is the thermal conductivity, , * 0a a   are the thermal relaxation times 

 

c. The heat conduction equation : 
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                
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(5)                                                

 

where, K is the thermal conductivity,
pc is specific heat per unit mass at constant 

strain, 0 is the first relaxation time,   is second relaxation time, 
ij  is the 

Kronecker delta,  is density and T is the incremental change of temperature 

from the initial state of the solid half space. Moreover the use of the relaxation 

times 0,   and a parameter 
ij  marks the aforementioned fundamental 

equations possible for the three different theories: 

 

Classical Dynamical theory: 0 0, 0ij      

Lord and Shulman’s theory: 00, 0,  1ij      

Green and Lindsay’s theory: 
0 0,  0ij      

 

d. Maxwell’s equations: 

 

,0, 0, e e
t t

 


 
 

    
 

                               (6)   

                                                            

where,  , B , e and e are electric field, magnetic field, permeability and 

permittivity of the medium.   

 

e. The components of electric and magnetic field: 

                                                                                     

  00,0, h                                                               (7) 

 

where, h  is the perturbed magnetic field over 0 . 

 

f. Maxwell stress components: 
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 ij e i i j j k k ijT H e H e H e       (where i, j, k =1, 2,3)                  (8)                                               

 

where, iH ,
jH , kH  are the components of primary magnetic field, ie , 

je , ke  

are the stress components acting along x-axis, y-axis, z-axis respectively and 
ij  

is the Kronecker delta.           

 

Using Eq. (8), we get 

 

2

22 0e

u v
T H

x y


  
  

  
 and 12 0T                                     (9) 

 

The dynamical equations of motion for the propagation of wave have been 

derived by Biot [13] and in two dimensions these are given by 

 
2
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P B

x y y t




   
   

   
                                     (10) 
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
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                                              (11) 

 

where, 11 22,s s  and 12s are incremental thermal stress components. The first two 

are principal stress components along x- and y-axes, respectively and last one is 

shear stress component in the x-y plane,   is the density of the medium and u, v 

are the displacement components along x and y directions respectively, B is body 

force and its components along x and y axis are xB and yB respectively .   is the 

rotational component i.e. 
1

2

v u

x y


  
  

  
 and 22 11P s s  . 

The body forces along x and y axis under constant primary magnetic field 0H  

parallel to z-axis are given by 

 
2 2

2

0 2x e

u v
B H

x x y


  
  

   
                                          (12)                                                                                                             
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                                          (13)                                                                                                         
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where, e is permittivity of the medium. 

 

Following Biot [13], the stress-strain relations with incremental isotropy are 

 

11 ( 2 ) ( ) 2xx yy xxs P e P e e
x

     
 

        
 

                       (14)                                                          

 

22 ( 2 )xx yys e e
x

    
 

     
 

                                        (15)                                                                                         

 

12 2 xys e                                                                    (16)                                                                                                                                  

 

where, 

1
, ,

2
xx yy xy

u v v u
e e e

x x x y

    
    
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                         (17)                                                                       

 

where, xxe  and 
yye are the principle strain components and 

xye is the shear strain 

component, (3 2 ) ,t      t  is the coefficient of linear expansion of the 

material,    are Lame’s constants,   is the incremental change of 

temperature from the initial state and   is second relaxation time.  

 

3 Formulation of the problem 

We consider a transversely isotropic, homogeneous elastic half space under 

constant magnetic field acting along z-axis and initial compressive stress P acting 

along x-axis at absolute temperature 0  (Figure-1). A plane SV-wave is incident 

at an angle   at 0y  , such that it get reflected and giving three waves namely 

reflected SV at an angle  , thermal-waves at an angle 1  and P-wave at an angle 

2  respectively as shown in the diagram.  

 

4 Boundary conditions 

The following boundary conditions are supplemented at 0y  : 

i. 12 0,x xyf s Pe      

ii.  22 0yf s   , 

iii. 0
T

hT
y


 


.                                                           (18)                                                                                                                                
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Figure 1 Reflection of magneto-thermoelastic plane waves 

 

5 Solution of the problem 

From Eq. (12), Eq. (13), Eq. (14), Eq. (15), Eq. (16) and Eq. (17), we get 
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  (20) 

 

Eq. (5) can be modified as 

 
2 2

2

0 02 2
= + γp ij

u v u v
K c

t t t x y t x y
   
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Eq. (19) and Eq. (20) can be solved by choosing potential functions    and  as 

 

u
x y

  
 
 

 and v
x y

  
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                                             (22) 

From Eq. (19) and (22), we get 
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From Eq. (20) and Eq. (22), we get 
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Eq. (23) and Eq. (25) represent magneto- thermo compression waves along x- axis 

and y- axis respectively, whereas Eq. (24) and Eq. (26) represent magneto- thermo 

distortional waves along x- axis and y- axis respectively. For initial stress along x- 

axis, the four equations (23)-(26) reduced to two equations as 
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where,  
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

 
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1c  is known as P-wave velocity and 2c  is called SV-wave velocity. Also, for 

P-wave 0v   and for SV-wave 0.u   

 

Now, from Eq. (20) and (22), we get 
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where, 
2 2

2

2 2x y

 
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From equations (27), (28) and (30), we conclude that P-wave depends on the 

presence of magnetic and thermal field whereas SV-wave remains unaffected 

which is in accordance with the GL-theory.  

 

The solution of Eq. (27), Eq. (28) and Eq. (30) is plane harmonic waves travelling 

perpendicular to the x-y plane, which is given as  

 

1 exp[ { ( sin cos ) }]i k x y t                                               (31)                                                                                        

 

1 exp[ { ( sin cos ) }]i l x y t                                               (32)                                                                                     

 

1 exp[ { ( sin cos ) }]i k x y t                                               (33)                                                                                   

  

where, k and l are compression and rotational wave numbers,   is angular 

frequency. 

 

From Eq. (27), Eq. (29) and Eq. (33), we get 
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From Eq. (30), Eq. (31) and Eq. (33), we get 
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In order to satisfy Eq. (34) and Eq. (35), the determinant of the coefficients of 

both Eq. (34) and Eq. (35) will be zero, therefore 
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Expanding Eq. (36), we get 

 4 21 0i i                                                (37) 

where, 
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Eq. (37) is biquadratic in  , it means that P-wave and thermal wave travel with  

different velocities. Therefore, on striking the SV-wave at y = 0 making an angle 

  in the solid half space it will have one reflected SV-wave making an angle  , 

P-wave and thermal wave at an angle 1 and 2 (fig. 1). Therefore from the above 

discussion we can take displacement potential and perturbation temperature in the 

following form 

1 1 1 1 2 2 2 2exp[ { ( sin cos ) }] exp[ { ( sin cos ) }]i k x y t i k x y t              (39)                    

 

1 2exp[ { ( sin cos ) }] exp[ { ( sin cos ) }]i l x y t i l x y t                  (40)                            

 

1 1 2 2 2 2exp[ { ( sin cos ) }] exp[ { ( sin cos ) }]i k x y t i k x y t               (41)                            

 

where, 1 2,   represent amplitudes of the P-wave and thermal wave, 1  

represents amplitude of incident SV wave and 2 is the amplitude of reflected 

SV-waves respectively.                                                                    

 

Also, 1 2,   and  are related to respective wave numbers as 

 

1 1 2 2sin sin sink k l                                                       (42)                                                                                                     

 

Eq. (42) can be written in terms to Snell’s law as 
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1 2
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                                                       (43)                                                                                                      

where, 
2

2

2

1

c

c
   and 1 2,  are the roots of equation 

 4 21 0,i i         and are given as 

 

1 2

1 1 2 2

,
k c k c

 
     and 

2

2

1

c

c

 
   

 
                                         (44) 

                                                                                  

Introducing Eq. (31) and Eq. (33) in into Eq. (30), we get 

 

 
 

  

 
 

2
0

1

0 2

0 1

0

1 1

1
1

1

iji i

i
i i

i

    


  






 
 

  
  

             

  

and   

 

  

 
 

2
0

2

0 2

0 2

0

1 1

1
1

1

iji i

i
i i

i

    


  






 
 

  
  

             

                           (45)                                                                                      

 

 

  

 
 

2
0

1 1

0 2

0 1

0

1 1
exp[ { ( sin cos ) }

1
1

1

iji i
i k x y t

i
i i

i

    
   

  






 
 

  
    

             

                          

 

  

 
 

2
0

2 2 2 2

0 2

0 2

0

1 1
exp[ { ( sin cos ) }]

1
1

1

iji i
i k x y t

i
i i

i

    
   

  






 
 

  
   

             

(46) 

Introducing Eq. (14), Eq. (15), Eq. (16) and Eq. (22) in the first boundary 

condition of Eq. (18), we get 
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2 2 2

2 2
2 0

2

P

x y x y

  
 

    
      

      

                                    (47)                                                                            

Introducing Eq. (14), Eq. (15), Eq. (16) and Eq. (22) in the second boundary 

condition of Eq. (18), we get 

 

   
2 2 2 2

2 2

0 02 2
2 2 0e eH H

y y x y y t y

  
       

        
          

         

         (48)                                                                         

Since we have taken the upper layer is thermally insulated, therefore from the 

third boundary condition of Eq. (18), we get 

 

0
T

y





                                                        (49) 

Substituting Eq. (39) and Eq. (40) in Eq. (47) and with the help of Eq. (41) and Eq. 

(42), we get 

2 1 2
1 22 2

1 1 1 1 2

cos 2 sin 2 sin 2 cos 2 0
  

   
  

        
          

        
          (50)                                        

Similarly, substituting Eq. (39), Eq. (40) and Eq. (41) in Eq. (48) and with the 

help of Eq. (29), Eq. (30), Eq. (42) and Eq. (43), we get 

 

 

2
2 22 1 1

1 12 2

1 1 1 1

2
2 22 2

2 22 2

1 2 2

1
1 ' sin 2 1 2 sin (1 sin )

1
1 2 sin (1 sin ) 1 ' sin 2 0

i

i

  
    

  

 
    

 





      
            

        

    
            

      

    (51)                            

where, 
2

1

P

c



  and 

2

2

P

c



   

Substituting Eq. (46) in Eq. (49) and with the help of Eq. (44), we get 

1 1 2 2

2 2

1 1 1 1 2 2

cos cos1 1
0

i i

   

   

         
         

              
                       (52) 
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Eliminating 1

1




from Eq. (50) and Eq. (52), we get 

   
 

2 2

2 2 1 1 1 1 2 22 1

2 2
1 1 1 2 2 1

cos sin 2 cos sin 2
1

cos cos 2

i i

i

      

    

       
     

       

    (53)                              

Eliminating 2

1




from Eq. (51) and Eq. (52), we get 

    

 
 

   

2 2 2

2 2 1 1 1

2

22 2 2

1 2 2 1 1 1 2 1 12

2
2 1

2 2
1 1 1 2 2 1

cos 1 2 sin 1 sin

1 2 sin
cos cos cos

1 sin
1

cos sin 2 1 '

i

i

i

    


     

  

     

 

       
 
              
           

      
 
 
 
  

  (54) 

Equating Eq. (53) and Eq. (54), we get 

1

1

1

PR





 


                                                   (55)                                                                                                                                   

Equating Eq. (54) and Eq. (55), we get 

2

1

SVR





  


                                                 (56)                                                                                                                        

Equating Eq. (52) and Eq. (55), we get 

2
2

1

P

C
R




  


                                                 (57)                                                                                                                         

where, A, B, C and H are given as 
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 

 

 

 

2

2 2 1 1

2 2

1 1 1

2

1 1 2 2

2 2

2 2 2

cos [ { cos 2( ) (1 )cos 2

      cos 2 1 sin ' sin 2 sin 2 } cos 2 ]

      cos [ { cos 2( ) (1 )cos 2

      cos 2 1 sin ' sin 2 sin 2 } cos 2 ]

i

i

    

       

    

       





        

     

      

     

             (58)                                  

   2 2

1 2 2 12 cos cos2 sin 2 1 'i                                   (59) 

   2 2

2 1 1 22 cos cos2 sin 2 1 'C i                                   (60)                                                                       

 

 

 

 

2

2 2 1 1

2 2

1 1 1

2

1 1 2 2

2 2

2 2 2

cos [ { cos 2( ) (1 )cos 2

      cos 2 1 sin ' sin 2 sin 2 } cos 2 ]

      cos [ { cos 2( ) (1 )cos 2

      cos 2 1 sin ' sin 2 sin 2 } cos 2 ]

i

i

    

       

    

       





        

     

      

     

             (61)                                               

2

1

SVR



   reflection coefficients of plane SV-wave, 

1 1

1
( )

1

P cR



   represents 

reflection coefficients of thermal wave and 
2 2

2
( )

1

P cR



   reflection coefficients 

of P- wave. 

  

6 Numerical analysis and calculations 

 
Approximate expression for reflection coefficients is obtained by assuming 

practical values of 1 and 1 for elastic materials. Solving Eq. (38) and 

retaining only first degree terms of   and  , we get  

1

1
1

2
T    and 

3 1

2 2
2 i                                          (62)                                                                                                                

Eq. (43) can be written as 
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1 2
1 2sin sin ,sin sin ,   

 
 

 
                                          (63)                                                                                                                                                                                         

1 1

2 2
2 2 2 2

1 1 2 2

1
cos 1 sin 1 sin ,cos 1 sin 1 sin .T i 

     
   

         
   

 

The equations (58-61) can be written by using Eq. (63) as 

1

0 01 2

0 0

1 1

,P SVR R
 

 

 
    

 
and 

2
0PR                            (64)                                                                           

where,  

0 (1 ') cos2pq r s      
, 0 2cos 2 sin 2 (1 ')(1 )T      

, 
1

2
21

1 sinTq



 

  
 

, 
0 (1 ') cos2pq r s       , 

21
p 4 1 sin cos

2
T  

 
   

 
 , 

1

2
21

1 sinTs



 

  
 

 ,                                  

1
3 1

2
2 2 22 2

1
cos 2 cos 2 sin cos 2 1 1 sinT

T Tr i


       
 

         
 

 .     (65)                                 

From Eq. (64), we conclude that there is no P-wave in the reflection when 

practical values 1 and 1 for elastic materials are assumed.  

Various graphs are plotted between SVR ,
1 1( )P cR ,

2 2( )P cR  and  for taking 

0.1,0.3,0.5,0.7,0.9S   for tensile stress and 0.1, 0.3, 0.5, 0.7. 0.9S       for 

compressional stress. SVR ,
1 1( )P cR and 

2 2( )P cR are calculated by taking parameters 

for copper alloy (Table 1). The results are compared with purposed model and 

standard model from approximation and are illustrated graphically with the help 

of MATLAB software. The results are closed to the standard model. The various 

curves are plotted by approximating the Eq. (55), Eq. (56) and (57) by considering 
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relaxation factor and coupling factor very small, we observed that no thermal 

P-wave is reflected while both reflected SV-wave and reflected P-wave is seen. 

Figure 2 to Figure 6 are plotted without using approximation, Figure 7 to Figure 

11 are plotted after using approximation for Eq. (64) at various incident angles. A 

graphical view is taken for variation of angle of incidence θ   from 00
 
to 040  

and from 00
 
to 050 ; two series are taken while plotting the graphs i.e. taking 

0.1,0.3,0.5,0.7,0.9S   for tensile stresses and 0.1, 0.3, 0.5, 0.7. 0.9S        for 

compressional stresses. Here 
2

P
S


 is known as stress parameter.  It is 

observed that SV-wave is greatly affected by the presence of magnetic field and 

temperature of the solid half space. Figure 2 shows that the maxima and minima 

of reflection coefficients of SV-wave are in the 

range 0 010 30  for 0.1,0.3,0.5,0.7,0.9S  . The variation of reflection 

coefficients for SV reflected wave in magneto-thermal medium is same for both 

compressional and tensile stress; the only difference is the reversal of the stress 

(Fig. 3). Figure 4 is plotted for the reflection coefficients of P-wave, the reflection 

coefficient is minimum at 020 and in figure 5, the maxima and minima of 

reflection coefficients of SV-wave are in the range 0 010 30  . Figure 6 is 

plotted for reflection coefficient of thermal wave for various values of 

stress 0.1,0.3,0.5,0.7,0.9S  , from this figure it is clear that the maximum value 

of reflection coefficients of thermal waves occur at an angle of incident 

020 without using approximation. However in figure 7, the range of maxima and 
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minima for reflection coefficients of thermal waves is 0 020 40  when 

approximation is used. Figure 8 shows that the maximum of reflection coefficients 

of SV-wave is at an angle 032  for 0.1, 0.3, 0.5, 0.7. 0.9S        after using 

approximation.   

Table 1 

Parameter Numerical Value 

  0.005  

  3 37 /.14 10 ,kg m  

2

0eH  9 21.24 10 /N m  

  10 29.5 10 /N m  

  0.005  

t  6 116.6 10 ,K   

K  401 / ( . )W m K  

pc  0.39 /  KJ Kg K  

  10 24.5 10   /N m  

 

Similarly, Figure 9 to Figure 11 is plotted for reflected SV, reflected P and 

reflected thermal wave after using approximation. Figure 12 to Figure 14 are 

plotted for reflected SV, reflected P and reflected thermal wave at various values 

of magnetic field keeping initial stress at 0.5. It is observed that in the presence of 

magnetic field there is remarkable variation in these curves. Figures (15–17) are 
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plotted between the reflection coefficients of P, T and SV waves against angle of 

incidence θ  for relaxation times 12 12

0τ  = 0s, 0.04  10 s, 0.8  10 s    at constant 

H = 0  and S = 0.5, it is clearly observed that the effect of relaxation time is 

prominent for 12

0τ  = 0.04  10 s  and the effect is more for increase in 

relaxation time. 
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Figure 3 
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Figure 5 
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Figure7
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Figure 9 

 

 
 

Figure 10 
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Figure 11 

 

Figure 12 
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Figure 13 

 

Figure 14 
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Figure 15 

 

Figure 16 
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Figure 17 

 

7 Conclusion 
 

The purpose of this study is to show the combined effect of temperature, magnetic 

field, relaxation time and stress on the propagation of elastic plane SV-waves 

through a solid isotropic elastic half space.  It has been observed that in case of 

free space, very small energy is reflected, however in case of magneto-thermal 

medium, the SV incident wave is greatly modifies in the presence of stress as well 

as magnetic field of the medium. The results are compared with purposed model 

and standard model using from approximation. It is clearly observed that the 

effect of relaxation time on reflection coefficients of P, T and SV waves is 

prominent for 12

0τ  = 0.04  10 s  and the effect is more for increase in 

relaxation time. The results are closed to the standard model. This model is useful 

to study the problems involving heat change, magnetic field, mechanical stress 

applied at the boundary of the surface. The results presented in this paper may be 

useful for geophysicists to analyze material structures and rocks through 

nondestructive testing. The solution of such problems also affects different 

geomagnetic cases. 
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