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Abstract

According to a modified parameter 8, a new nonmonotone spectral
Conjugate Gradient method for unconstrained optimization is proposed
in this paper,which combines the conjugate gradient direction with spec-
tral step-length effectively. We applied the spectral step-length to the
entire Conjugate Gradient direction rather than the negative gradient
direction,and take advantage of the new nonmonotone F-rule for line
searches to obtain the next iteration point. The global convergent prop-
ertise of the algorithm with the modified parameter and the proposed
nonmonotone F-rule for line search are proved under some appropriate
conditions.
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1 Introduction
Consider the following unconstrained optimization problem
min f(z), v € R" (1)

where f : R™ — R is a continuously differentiable function, R" is an
Euclidean space.

Unconstrained optimization problem is an important research topic in math-
ematical programming fields. There are some methods for solving uncon-
strained optimization problem, such as feasible direction algorithm, gradient-
type methods, Newton-type and so on. It is well-known that conjugate gradient
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method is a good method for solving the unconstrained optimization problem
in management and engineering. It has the following formula for solving prob-
lem (1):

Tpy1 = T + apdy,

d,. = — Gk, k:(]a
g — g + Bredp—1, k> 1.

where dyis a search direction, [ is a scalar, g, = V f(x), ax is a positive
step-size along the search direction.

In many literatures(refer to [1-3]), the main thing is to choose the scalarfy,
which leads to many different conjugate gradient methods according to the
different ;. A well-known conjugate gradient method was proposed by Fletcher
and Reeves|[1], and some other choices as followed:

HS _ i Yk FR _ [lgkl?
* L * =
PRP _ ggyk—l CD _ _ [lgI>
* g1l * 1961
LS _ _ 9 Y1 DY _ llgx|?
’ dg—lykff g dz_lykflj
where || - || denotes Euclidean norm, y,_1 = gy — gr—1-

Raydan introduced the spectral gradient method(SGM) for potentially
large-scale unconstrained optimization [4]. The main feature of this method
is that only gradient directions are used at each line search whereas a non-
monotone strategy guarantees global convergence. The idea of nonmonotone
technique can be traced back to Grippo et al. in 1988 [5], thanks its excellent
numerical exhibition, many nonmonotone techniques have been developed in
recent years, for example, nonmonotone line search approaches, and nonmono-
tone trust region methods.

Motivated by the ideas of spectral gradient and conjugate gradient methods[6-
9], we combined the new nonmonotone techniques with the spectral gradient
method to obtain a more efficient algorithm. Different from the existing re-
search results, the paper will propose a new class of nonmonotone spectral con-
jugate gradient method. the paper will modify the spectral gradient method
of [10] from the parameterfy, in addition, We will apply spectral step-length
to the entire Conjugate Gradient direction instead of the negative gradient
direction, and take advantage of the new nonmonotone F-rule proposed by Yu
ZhenSheng for line searches to obtain the next iteration point.

The paper is organized as follows. in section 2, The modified algorithm is
proposed, all the essential features of its implementation is given, in section 3,
we establish the global convergence of the algorithm.
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2 A modified of nonmonotone spectral conju-
gate gradient method

Assume that f : R™ — R has continuous partial derivatives. The problem
considered in this paper is

min f(z), x € R" (2)
The iteration formulation for (2) is as follows:
L1 = Tk + ol

where dy, is a search direction and «y, is a step length chosen to induce the
value of f(z) The direction is generated by

dy, = —Orgx + Brdi,
where g;, denotes V f(zy)and dy = —0ygo and 6y, is a arbitrary parameter

(Oryp—1 + Sk—l)T

dzflyk—l

gk
Br =

where s, = 241 — xp = ardy and yi = grr1 — k-
In general, we denote 6; as

st s q
0, — k=171 1
K S£_1gk—1([ 1)

It’s easy to prove that,the spectral conjugate gradient method does not
guarantee dj to be the decent direction, which leads to the difficulties on the
global convergence. To tackle this problem,many authors proposed various
methods,including nonmonotone technique.

To describe the nonmonotone technique, we describe the nonmonotone
Armijo rule. «y is a stepsize with ap > 0 and dj, is a search direction sat-
isfied gi d, <0, Let a > 0, v € (0,1), 8 € (0,1)and let M be a nonnegative
integer. For each k | let m(k) satisfies

m(0) =0,0 <m(k) <min[m(k — 1)+ 1, M], for k> 1,
Let oy, = ﬁpka and p* be the smallest nonnegative integer p such that

k
flog + ) < og%%(k)[f(xk_j)] + 8" ag} dy..
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If the search is the nonmonotone Goldstein line search, so ay, should satis-
fied the following condition:

flre +ap) < ngj%%k)[f(xk—j)] + kg dr,

flre + ap) < Ozfjngf}ﬁk)[f@k—j)] + uzkkngdk,

where 0 < p1 < o < 1
If the search is the nonmonotone wolfe line search, so «y should satisfied
the following condition:

< » Ta
[z + o) < ogﬁ?ﬁk)[f (Tr—j)] + M1k gy d,

g(zy + ardy)"dy, > vogi dy,

where 0 < 13 <y <1

Now we give a new nonmonotone F-rule line search proposed by Yu Zhen-
Sheng as follows: [11]

Let A € (0,1] M > 1 is a positive integer,defined m(k) = min[k + 1, M]

m(k)—1
Ner 2 A, 7= 0,12, m(k) =1 ) Ao =1,
r=0

Let a > 0 be bounded above and satisfy:

fz 4+ agpdy) < max|f(xy),

m(k)—1

D NS (@] + yanldr, g(x))
r=0
We now present the modified algorithm of the nonmonotone spectral con-
jugate gradient method. In this method, we give the conjugate gradient
direction, where the parameterf, is chosen from YasushiNarushima and
HiroshiY abe [12]and then obtain the a convex combination of conjugate di-

rection, which enhances the convergent properties.
Set d}

dy, = —pg + (1 — 1) Brdy 1,
where p € (3, 1] and

k= llgw Il :
otherwise.
(g dr—1+llgf Mdx—11)°
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and, we define spectral conjugate gradient as follow:
di = Oxd.. (3)

The definition of parameter 6, will be given in the following algorithm.
Algorithm 2.1

Step0. Give a positive integer M and some constants, ¢ > 0, 1 > o9 >
01>0,7€(0,1),0 >0, Opax > Omin > 0, set Oy € [Ormax, Omin], & = 0.
Stepl. Compute g, and ||gx| < e, STOP.

Step2. Compute dj, by (3).
_s,T

Step3.1 Set aj, + %.

Step3.2 Set v, = xp + apd.

Step3.3 Let A € (0, 1],define m(k) = min[k + 1, M| Let

m(k)—

Mer 2 A, 7=0,1,2,---,m _1 Z Aer = 1.

if
f(l’k —+ Oékdk) < max{f Ik Z )\krf T— r

+yo(di, 9(xr)) (4)

define xy 1 = x4, 8K = Tpr1 — Tr,Uk = 9(Tra1) — g(zx),and go to step 4.

if (3) does not hold, define @ € [o100, Tocvk] let ar = e and go to
step (3.2).

Step4. Compute by = (Sg, yk), if b < 0, set Opy1 = Onax, otherwise
compute ay = (s, sx) and

Or+1 = min{Opax, max{Omin, ax/bi}}

Step5. Set k:=k+ 1, and go to step 1 .

3 The global convergence of the algorithm

In order to achieve the convergence of the algorithm ,we give some Assumptions
and Lemmas as follow:
Assumption 3.1

A: f(x) is bounded above on the level set L = z|f(x) < f(xo)

B: In some neighborhood Q of L ,f is continuously differentiable,and its
gradient ¢ is Lipschitz continuous, namely, there exists a constant L such that
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lg(z) = gl < Lljz =y
Lemma 3.1 Assume d; is generated by the algorithm (2.1), then

9k i < Omin (1 = 27) [l ge]|*. (5)

where 7 € (3,1)
Proof:

if B, = 0, then dy = —0ugy, since, 0, > O and p € (%, 1], there exist
7€ (3,1], and > 7 , so we have

I* I*

gr di = =0t gn ~OminTl| gr|” < Omin (1 — 27) || g

if 8. > 0, by the definition of d , we have

gr e = Ox(—pll g lI” + (1 — 1) Brgi di—1)
< 9 2 1 o ||gk|| Td B
< On(—nllgll” + ( M)2ggdk_19k k—1)
< Op(=7llgll” + (1 = 7)llgxl?)
< 01— 27)]| gl
< 9mm<1 - 27—)”ng2~

o (5) hold.
Lemma 3.2 Assumption B is hold , oy satisfy the formula (4) of algorithm,
then there exist m, € |07, 0] satisfy :

RPN ©)

ag > min{1,

Proot:
At the kth iterate , if 8 = 1 satisfy the formula (4). then oy = 1,
otherwise, there exist 7, € (01, 02) , which does not satisfy formula (4) for
Br/m, > 0, in other words :

Flan+ ) > max{ (), i N )} 22 )
> f(ar) + ’Yﬂ—k<dk,g(xk)>- (7)

by mean value theorems, we have:

fxp + ady) — / g(xp +tdy) — g(zg)di)dy + o{g(zy), di.)
<

Lo?|[dy||* + a{g(wr), di).
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with (7) , we have

(1 =)k |<gk,dk>\}
L [C

ap > min{1,

So, (6) is hold.
Lemma 3.3 Assume that sequence z;, is generated by algorithm 2.1, so that:

Fae) <o) + xS (), do) + v (ganr) dis)
(8)

k—1

<f(xo) + Ay Z a(g(z,),d).

r=0

Proof: We prove by induction.
if k=1, by (4) and A <1, we have

f(x1) < f(zo) + Aao(g(x0), do) < f(w0) + yAa0(g(20), do)-

Assume (8) is hold for 1,2, --- k , we can think of this problem from two
cases :

case 1 : max[f(zg), 7" Ner f(21—r)] = f(21), by (4),we have

f(ran) = flan + andr) <f(z) + yar(g(zr), di)
k—1

<flwo) + M D anlg(ay), dv) + van(g (), di)

r=0

Sf(x()) + >‘7 Z O‘r(Q(xr)a dr)

r=0

case 2 : max|[f(xy), ZT:’“(Il Nerf (2x—r)] = Z:’Z};l Mer f (2—r),Letq = minlk,
M — 1] by (4) we have

f(xrsr) =f(zr + ardy,)

<D Mo (wrp) + vanlg (), di)

p=0
q k—p—2
< Noplf (o) + My Y enlglan), de) + Y1 (9(Tap1), dr—p1)]
p=0 r=0

+ you(g(wx), di)-
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impose (1,2 -+-,q)x (1,2 -+, k—q=2)C {(p,7) : 0 < p < q,0 < 7 < k—q—2},
ZZ:O )\kp - 17 >\k:p 2 >\, we have

k—q—2 ¢

f(xk+1> Sf(mo) +A Z (Z )\kp)ar<g(xr)a dr> + P)/Z )\kpakfpfl

r=0 p=0 p=0

(9(Xh—p-1), do—p-1) + vou(g(xr), di)
k—q—2 k-1

<flao)+ 3 Y alg@)d)+ Y anlg(@), d)

r=0 T’:k—p—l

+ yar(g(2r), di)
k-1

= (o) + XY anlg(x,), dv) + var(g(s), di)

k
<flwo) + MY an(glar).dy)

r=0

end.
Theorem 3.1 Assume that x; and dj, is generated by algorithm 2.1 and A ,
B holds ,and then

lim (g(xg), dx) = 0. 9)

k—o0

Proof:

Assume that there exist a boundless sequence index set K, and there existe >
0, which satisfy (g(zg),dr) < —e. for any k € K , impose the lemma 3.3 | for
any k € K, we have :

k—1

—)V}/ Z O‘r<g<xr>7 dr> < f(IO) - f(xk>7 (10)

r=0reK

impose the lemma 3.1 , g/ di, < 0,nin(1 — 27)]|gx||* , which means

 {9(@k), di)

>0, (20 — 1), 1
Tl = fmin(27 = 1) (1
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with (6) (10), (11) we have:

k—1
flao) = flan) = =Xy > anlgla,),d,)
r=0,re K
k—1
> \ye Z o
r=0,reK
(1-m (@), d)]
> \ye Z min{1, BELLL"] o}
r=0,reK L “dTH
— (1—-7v)o
> \ye min{l, ——21 .0, (21 — 1
> Ay T:;TEK { 7 ( )}

since f(z) is bounded below , let k& — oo(k € K') , we have
o0 > f(xo) — f(xy) — o0.

paradoxically, so (9) holds
end.
Theorem 3.2 Assume that sequence {x;} is generated by algorithm 2.1, and

then we have
Jim gy [ =0
Proof:
by Lemma 3.1 and definition 3.1, we have

0> lim — lgrll? > lim (g(z1), di) = 0
k—o0 2 k—o0

which implies
lim [[gx|| =0
k—oo

end.
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