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Abstract

According to a modified parameter βk, a new nonmonotone spectral
Conjugate Gradient method for unconstrained optimization is proposed
in this paper,which combines the conjugate gradient direction with spec-
tral step-length effectively. We applied the spectral step-length to the
entire Conjugate Gradient direction rather than the negative gradient
direction,and take advantage of the new nonmonotone F-rule for line
searches to obtain the next iteration point. The global convergent prop-
ertise of the algorithm with the modified parameter and the proposed
nonmonotone F-rule for line search are proved under some appropriate
conditions.
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1 Introduction

Consider the following unconstrained optimization problem

min f(x), x ∈ Rn (1)

where f : Rn → R is a continuously differentiable function, Rn is an
Euclidean space.

Unconstrained optimization problem is an important research topic in math-
ematical programming fields. There are some methods for solving uncon-
strained optimization problem, such as feasible direction algorithm, gradient-
type methods, Newton-type and so on. It is well-known that conjugate gradient
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method is a good method for solving the unconstrained optimization problem
in management and engineering. It has the following formula for solving prob-
lem (1):

xk+1 = xk + αkdk

dk =

{
−gk, k = 0,
−gk + βkdk−1, k ≥ 1.

where dkis a search direction, βk is a scalar, gk = ∇f(xk), αk is a positive
step-size along the search direction.

In many literatures(refer to [1-3]), the main thing is to choose the scalarβk,
which leads to many different conjugate gradient methods according to the
differentβk. A well-known conjugate gradient method was proposed by Fletcher
and Reeves[1], and some other choices as followed:

βHSk =
gTk yk−1
dTk−1yk−1

, βFRk =
‖gk‖2

‖gk−1‖2
,

βPRPk =
gTk yk−1
‖gk−1‖2

, βCDk = − ‖gk‖2

dTk−1gk−1
,

βLSk = − gTk yk−1
dTk−1yk−1

, βDYk =
‖gk‖2

dTk−1yk−1
,

where ‖ · ‖ denotes Euclidean norm, yk−1 = gk − gk−1.
Raydan introduced the spectral gradient method(SGM) for potentially

large-scale unconstrained optimization [4]. The main feature of this method
is that only gradient directions are used at each line search whereas a non-
monotone strategy guarantees global convergence. The idea of nonmonotone
technique can be traced back to Grippo et al. in 1988 [5], thanks its excellent
numerical exhibition, many nonmonotone techniques have been developed in
recent years, for example, nonmonotone line search approaches, and nonmono-
tone trust region methods.

Motivated by the ideas of spectral gradient and conjugate gradient methods[6-
9], we combined the new nonmonotone techniques with the spectral gradient
method to obtain a more efficient algorithm. Different from the existing re-
search results, the paper will propose a new class of nonmonotone spectral con-
jugate gradient method. the paper will modify the spectral gradient method
of [10] from the parameterβk, in addition, We will apply spectral step-length
to the entire Conjugate Gradient direction instead of the negative gradient
direction, and take advantage of the new nonmonotone F-rule proposed by Yu
ZhenSheng for line searches to obtain the next iteration point.

The paper is organized as follows. in section 2, The modified algorithm is
proposed, all the essential features of its implementation is given, in section 3,
we establish the global convergence of the algorithm.
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2 A modified of nonmonotone spectral conju-

gate gradient method

Assume that f : Rn → R has continuous partial derivatives. The problem
considered in this paper is

min f(x), x ∈ Rn (2)

The iteration formulation for (2) is as follows:

xk+1 = xk + αkdk,

where dk is a search direction and αk is a step length chosen to induce the
value of f(x) The direction is generated by

dk = −θkgk + βkdk,

where gk denotes ∇f(xk)and d0 = −θ0g0 and θk is a arbitrary parameter

βk =
(θkyk−1 + sk−1)

Tgk
dTk−1yk−1

,

where sk = xk+1 − xk = αkdk and yk = gk+1 − gk.

In general, we denote θk as

θk =
sTk−1sk−1

sTk−1gk−1
([10])

It’s easy to prove that,the spectral conjugate gradient method does not
guarantee dk to be the decent direction, which leads to the difficulties on the
global convergence. To tackle this problem,many authors proposed various
methods,including nonmonotone technique.

To describe the nonmonotone technique, we describe the nonmonotone
Armijo rule. αk is a stepsize with αk ≥ 0 and dk is a search direction sat-
isfied gTk dk ≤ 0, Let a > 0, γ ∈ (0, 1), β ∈ (0, 1)and let M be a nonnegative
integer. For each k , let m(k) satisfies

m(0) = 0, 0 ≤ m(k) ≤ min[m(k − 1) + 1,M ], for k ≥ 1,

Let αk = βp
k
a and pk be the smallest nonnegative integer p such that

f(xk + αk) ≤ max
0≤j≤m(k)

[f(xk−j)] + γβp
k

agTk dk.
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If the search is the nonmonotone Goldstein line search, so αk should satis-
fied the following condition:

f(xk + αk) ≤ max
0≤j≤m(k)

[f(xk−j)] + µ1λkg
T
k dk,

f(xk + αk) ≤ max
0≥j≤m(k)

[f(xk−j)] + µ2λkg
T
k dk,

where 0 < µ1 ≤ µ2 < 1
If the search is the nonmonotone wolfe line search, so αk should satisfied

the following condition:

f(xk + αk) ≤ max
0≤j≤m(k)

[f(xk−j)] + γ1αkg
T
k dk,

g(xk + αkdk)
Tdk ≥ γ2g

T
k dk,

where 0 < γ1 ≤ γ2 < 1
Now we give a new nonmonotone F-rule line search proposed by Yu Zhen-

Sheng as follows: [11]
Let λ ∈ (0, 1] M ≥ 1 is a positive integer,defined m(k) = min[k + 1,M ]

λkr ≥ λ, r = 0, 1, 2, · · · ,m(k)− 1

m(k)−1∑
r=0

λkr = 1,

Let αk ≥ 0 be bounded above and satisfy:

f(xk + αkdk) ≤ max[f(xk),

m(k)−1∑
r=0

λkrf(xk−r)] + γαk〈dk, g(xk)〉.

We now present the modified algorithm of the nonmonotone spectral con-
jugate gradient method. In this method, we give the conjugate gradient
direction, where the parameterβk is chosen from Y asushiNarushima and
HiroshiY abe [12]and then obtain the a convex combination of conjugate di-
rection, which enhances the convergent properties.

Set d1k
d1k = −µgk + (1− µ)βkdk−1,

where µ ∈ (1
2
, 1] and

βY Hk =

{
0, ifgTk dk−1 ≤ 0,

‖gk‖2
(gTk dk−1+‖gTk ‖‖dk−1‖)

, otherwise.
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and, we define spectral conjugate gradient as follow:

dk = θkd
1
k. (3)

The definition of parameter θk will be given in the following algorithm.
Algorithm 2.1

Step0. Give a positive integer M and some constants, ε > 0, 1 > σ2 >
σ1 > 0, γ ∈ (0, 1),δ > 0, θmax > θmin > 0, set θ0 ∈ [θmax, θmin], k = 0.

Step1. Compute gk, and ‖gk‖ ≤ ε, STOP.
Step2. Compute dk by (3).

Step3.1 Set αk ←
−δgTk dk
‖dk‖2

.
Step3.2 Set x+ = xk + αkdk.
Step3.3 Let λ ∈ (0, 1],define m(k) = min[k + 1,M ] Let

λkr ≥ λ, r = 0, 1, 2, · · · ,m(k)− 1

m(k)−1∑
r=0

λkr = 1.

if

f(xk + αkdk) ≤ max{f(xk),

m(k)−1∑
r=0

λkrf(xk−r)}

+γαk〈dk, g(xk)〉 (4)

define xk+1 = x+,sk = xk+1 − xk,yk = g(xk+1)− g(xk),and go to step 4.
if (3) does not hold, define αnew ∈ [σ1αk, σ2αk] let αk = αnew and go to

step (3.2).
Step4. Compute bk = 〈sk, yk〉, if bk ≤ 0, set θk+1 = θmax, otherwise

compute ak = 〈sk, sk〉 and

θk+1 = min{θmax,max{θmin, ak/bk}}.

Step5. Set k := k + 1, and go to step 1 .

3 The global convergence of the algorithm

In order to achieve the convergence of the algorithm ,we give some Assumptions
and Lemmas as follow:
Assumption 3.1

A: f(x) is bounded above on the level set L = x|f(x) ≤ f(x0)
B: In some neighborhood Ω of L ,f is continuously differentiable,and its

gradient g is Lipschitz continuous, namely, there exists a constant L such that
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‖g(x)− g(y)‖ ≤ L‖x− y‖
Lemma 3.1 Assume dk is generated by the algorithm (2.1), then

gTk dk ≤ θmin(1− 2τ)‖gk‖2. (5)

where τ ∈ (1
2
, 1)

Proof:
if βk = 0, then dk = −θkµgk, since, θk ≥ θmin and µ ∈ (1

2
, 1], there exist

τ ∈ (1
2
, 1], and µ > τ , so we have

gTk dk = −θkµ‖gk‖2 ≤ −θminτ‖gk‖2 ≤ θmin(1− 2τ)‖gk‖2

if βk > 0, by the definition of dk , we have

gTk dk = θk(−µ‖gk‖2 + (1− µ)βkg
T
k dk−1)

≤ θk(−µ‖gk‖2 + (1− µ)
‖gk‖2

2gTk dk−1
gTk dk−1)

≤ θk(−τ‖gk‖2 + (1− τ)‖gk‖2)
≤ θk(1− 2τ)‖gk‖2

≤ θmin(1− 2τ)‖gk‖2.

so (5) hold.
Lemma 3.2 Assumption B is hold , αk satisfy the formula (4) of algorithm,
then there exist πk ∈ [σ1, σ2] satisfy :

αk ≥ min{1, (1− γ)πk
L

|〈gk, dk〉|
‖dk‖2

}. (6)

Proof:
At the kth iterate , if β = 1 satisfy the formula (4). then αk = 1,
otherwise, there exist πk ∈ (σ1, σ2) , which does not satisfy formula (4) for

βk/πk > 0, in other words :

f(xk +
αk
πk
dk) > max{f(xk),

mk−1∑
r=0

λkrf(xk−r)}+ γ
αk
πk
〈dk, g(xk)〉

> f(xk) + γ
αk
πk
〈dk, g(xk)〉. (7)

by mean value theorems, we have:

f(xk + αdk)− f(xk) =

∫ β

0

〈g(xk + tdk)− g(xk)dk〉dt + α〈g(xk), dk〉

≤ 1

2
Lα2‖dk‖2 + α〈g(xk), dk〉.



nonmonotone spectral conjugate gradient method 155

with (7) , we have

αk ≥ min{1, (1− γ)πk
L

|〈gk, dk〉|
‖dk‖2

}.

So, (6) is hold.
Lemma 3.3 Assume that sequence xk is generated by algorithm 2.1, so that:

f(xk) ≤f(x0) + λγ

k−2∑
r=0

αr〈g(xr), dr〉+ γαk−1〈g(xk−1), dk−1〉

≤f(x0) + λγ
k−1∑
r=0

αr〈g(xr), dr〉.

(8)

Proof: We prove by induction.

if k = 1, by (4) and λ ≤ 1 , we have

f(x1) ≤ f(x0) + λα0〈g(x0), d0〉 ≤ f(x0) + γλα0〈g(x0), d0〉.

Assume (8) is hold for 1 , 2 , · · · k , we can think of this problem from two
cases :

case 1 : max[f(xk),
∑mk−1

r=0 λkrf(xk−r)] = f(xk), by (4),we have

f(xk+1) = f(xk + αkdk) ≤f(xk) + γαk〈g(xk), dk〉

≤f(x0) + λγ
k−1∑
r=0

αr〈g(xr), dr〉+ γαk〈g(xk), dk〉

≤f(x0) + λγ

k∑
r=0

αr〈g(xr), dr〉.

case 2 : max[f(xk),
∑mk−1

r=0 λkrf(xk−r)] =
∑mk−1

r=0 λkrf(xk−r),Letq = min[k,
M − 1] by (4) we have

f(xk+1) =f(xk + αkdk)

≤
q∑
p=0

λkpf(xk−p)) + γαk〈g(xk), dk〉

≤
q∑
p=0

λkp[f(x0) + λγ

k−p−2∑
r=0

αr〈g(xr), dr〉+ γαk−p−1〈g(xk−p−1), dk−p−1〉]

+ γαk〈g(xk), dk〉.
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impose (1,2 ···,q)×(1,2 ···, k−q−2)⊂ {(p, r) : 0 ≤ p ≤ q, 0 ≤ r ≤ k−q−2},∑q
p=0 λkp = 1, λkp ≥ λ, we have

f(xk+1) ≤f(x0) + λ

k−q−2∑
r=0

(

q∑
p=0

λkp)αr〈g(xr), dr〉+ γ

q∑
p=0

λkpαk−p−1

〈g(xk−p−1), dk−p−1〉+ γαk〈g(xk), dk〉

≤f(x0) + λγ

k−q−2∑
r=0

αr〈g(xr), dr〉+ λγ

k−1∑
r=k−p−1

αr〈g(xr), dr〉

+ γαk〈g(xk), dk〉

=f(x0) + λγ
k−1∑
r=0

αr〈g(xr), dr〉+ γαk〈g(xk), dk〉

≤f(x0) + λγ
k∑
r=0

αr〈g(xr), dr〉

end.
Theorem 3.1 Assume that xk and dk is generated by algorithm 2.1 and A ,
B holds ,and then

lim
k→∞
〈g(xk), dk〉 = 0. (9)

Proof:

Assume that there exist a boundless sequence index setK, and there existε >
0, which satisfy 〈g(xk), dk〉 ≤ −ε. for any k ∈ K , impose the lemma 3.3 , for
any k ∈ K, we have :

−λγ
k−1∑

r=0r∈K

αr〈g(xr), dr〉 ≤ f(x0)− f(xk), (10)

impose the lemma 3.1 , gTk dk ≤ θmin(1− 2τ)‖gk‖2 , which means

−〈g(xk), dk〉
‖gk‖2

≥ θmin(2τ − 1), (11)
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with (6) (10), (11) we have:

f(x0)− f(xk) ≥ −λγ
k−1∑

r=0,r∈K

αr〈g(xr), dr〉

≥ λγε

k−1∑
r=0,r∈K

αr

≥ λγε
k−1∑

r=0,r∈K

min{1, (1− γ)πr
L

· |〈g(xr), dr〉|
‖dr‖2

}

≥ λγε

k−1∑
r=0,r∈K

min{1, (1− γ)σ1
L

· θmin(2τ − 1)}

since f(x) is bounded below , let k →∞(k ∈ K) , we have

∞ ≥ f(x0)− f(xk)→∞.

paradoxically, so (9) holds
end.

Theorem 3.2 Assume that sequence {xk} is generated by algorithm 2.1, and
then we have

lim
k→∞
‖gk‖ = 0

Proof:
by Lemma 3.1 and definition 3.1, we have

0 ≥ lim
k→∞
−θmin

2
‖gk‖2 ≥ lim

k→∞
〈g(xk), dk〉 = 0

which implies
lim
k→∞
‖gk‖ = 0

end.
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