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Abstract

This paper is devoted to studying the removable singularities of so-
lutions for the Dirichlet problem for degenerate non-linear elliptic equa-
tions on the boundary of domain. Method a priori energetic estimates
of solutions to elliptic boundary value problems is used. The applied
method differs from the way for obtaining appropriate results in linear
situation.
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1 Introduction

The corresponding results for linear equations were obtained in the papers of
L.Carleson [1], V.A.Kondratyev, O.A.Oleynik [2], O.A.Oleynik, G.A.Iosifyan
[3], V.A.Kondratyev, E.M.Landis [4], D.Gilbarg, N.Trudinger [5], T.Gadjiev,
V.Mamedova [6], J.Diederich [7], R.Harvey, J.Polking [8], for non-linear equa-
tions in the papers of T.Kilpelainen, X.Zhong [9] and others.

Let Ω ⊂ Rn, n ≥ 2 be a bounded domain. Consider the following equation

∑
|α|≤m

(−1)|α|DαAα(x, u,Du, ..., Dmu) =
∑
|α|≤m

(−1)|α|DαFα(x), (1)
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where

Dα =
∂|α|

∂xα1
1 ∂x

α2
2 ...∂x

αn
n

, |α| = α1 + α2 + ...+ αn, m ≥ 1.

Assume that the coefficients Aα(x, ξ) of the equation (1) are measurable
with respect to x ∈ Ω̄ , are continuous with respect to ξ ∈ RM (M is the
number of different multi-indexes of lengths no more than m) and satisfy the
conditions

∑
|α|=m

Aα(x, ξ)ξmα ≥ ω(x) |ξm|p − c1ω(x)
m−1∑
i=1

|ξi|p − f1(x),

|Aα(x, ξ)| ≤ c2ω(x)
m∑
i=0

∣∣∣ξi∣∣∣p−1
+ f2(x), (2)

where ξ = (ξ0, ..., ξm), ξi = (ξiα), |α| = i, p > 1 ,

f1(x) ∈ L p
p−1

,loc(Ω), f2(x) ∈ L1,loc(Ω), Fα ∈ L p
p−1

,loc(Ω).

Suppose that ω(x), x ∈ Ω is a measurable non-negative function satisfying
the conditions: ω ∈ L1,loc(Ω), and for any p > 0 and some σ > 1

∫
Ωρ

ω−1/(σ−1)dx <∞, ess sup
x∈Ωρ

ω(x) ≤ c3ρ
n(σ−1)

∫
Ωρ

ω−
1

(σ−1)dx


1−σ

. (3)

Here Ωρ = Ω∩Bρ, Bρ = {x : |x| < ρ}, ci are positive constants dependent only
on the problem data. In particular, it follows from conditions (3) that ω ∈ Aσ
([10]), i.e. ∫

Ωρ

ωdx

∫
Ωρ

ω−
1

σ−1dx


σ−1

≤ c4ρ
nσ. (4)

The following estimate also follows from (3)

ess sup
x∈Ωρ

ω(x) ≤ c5ρ
−n

∫
Ωρ

ωdx

 . (5)

Furthermore, assume that

ω(Ωs)

ω(Ωh)
≤ c6

(
s

h

)nµ
, (6)

µ < 1 + p/n, for any s ≥ h > 0 , where ω(Ωs) =
∫

Ωs

ω(x)dx.
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2 Some definitions and auxiliary results

We’ll describe geometry of ∂Ω by means of the non-linear basic frequency λpp(r)
of the cross section Sr

λpp(r) = inf

∫
Sr

|∇Sv|p ds


∫
Sr

|v|p ds


−1

, (7)

where the lower bound is taken on all continuously differentiable in some vicin-
ity of Sr functions vanishing on ∂Ω; ∇Sv(x) is a projection of the vector ∇v(x)
on a tangential plane to Sr at the point x. For p = 2 the number λ2

2(r) is the
first eigenvalue of Beltrami-Laplace operator on Sr, for p 6= 2 λpp(r) was studied
in various papers. Some examples of calculation, or its lower estimates for a
number of specific sets are for example in [11].

By Wm
p,ω(Ω) we denote a closure of the functions from Cm(Ω̄) with respect

to the norm

‖u‖Wm
p,ω(Ω) =

∫
Ω

ω(x)
∑
|α|≤m

|Dαu|p dx

 1
p

◦W m
p,ω is a closure of the functions from C∞0 (Ω) to Wm

p,ω(Ω).
We say that the function u(x) ∈ ◦W m

p,ω(Ω) is a generalized solution of the
Dirichlet problem for equation (1) if the following integral identity is fulfilled
for an arbitrary function η(x) ∈ C∞0 (Ω)∫

Ω

∑
|α|≤m

Aα(x, u, ..., Dmu)Dαηdx =
∫
Ω

∑
|α|≤m

Fα(x)Dαηdx. (8)

We’ll divide the considered domains into two classes. The first class is
”narrow” domains whose complement in the vicinity of the point 0 is suffi-
ciently massive, for example it contains some cone with a vertex at this point.
In the terms of frequency of set this class of domains satisfies the condition
A)rλp(r) > d1 > 0, ∀r ∈ (0, r0), r0 > 0.

The second class contains ”wide domains” , i.e. such that have ”inwards
cusp” at the point 0. In the terms of frequency of the set this class of domains
is described as following
B)rλp(r) < d2 <∞, ∀r ∈ (0, r0).

Determine the function ψ(r) on (0, r0) by the inequality

inf
rψ(r)<|x|<r

λp(|x|)(r − rψ(r))ω(x) ≥ µ > 0, (9)

where µ is such that 0 < 1−c0 < ψ(r) < 1. For monotonically decreasing func-
tions λp(r) (we meet them in applications) inequality (9) accepts the following
form

rλp(r)(1− ψ(r))ω(x) ≥ µ, for ϕ(r) ≡ 1− ψ(r) ≥ µω−1(x)(rλp(r))
−1. (10)



24 Tahir S. Gadjiev and Nigar R. Sadykhova

Consider the distance function from the point x to ∂Ω− g (x) = ρ (x, ∂Ω).
It is known that ∃δ > 0 such that Γδ = {x : 0 < ρ (x, ∂Ω) < δ} , g (x) ∈ Cm,
|∇g (x)| = 1. Furthermore, it follows from [5] that∣∣∣∇jg (x)

∣∣∣ ≤ h0 (g (x))1−j , ∀x ∈ Γδ, j = 1,m. (11)

Denote Ωr = Ω ∩ {x : g (x) < r}
For an arbitrary Γ ⊂ ∂Ω by ◦W m

p,ω(Ω,Γ) we denote a closure in the norm
Wm
p,ω(Ω) of the set of functions from C∞ (Ω) vanishing near ∂Ω\Γ. We’ll say

that u(x) ∈ ◦W m
p,ω,loc(Ω,Γ) if u(x) ∈ ◦W m

p,ω(Ω′, ∂Ω′\∂Ω) for any subdomain
Ω′ ⊂ Ω such that Γ ∩ ∂Ω′ = ∅.

Let u(x) ∈ ◦W m
p,ω(Ω,Γ) be a generalized solution of equation (1), i.e. u (x)

satisfy integral identity (8) for any function η (x) ∈ C∞0 (Ω′), Ω′ ⊂ Ω, Γ∩∂Ω′ =
∅.

Formulate some auxiliary lemmas.

Lemma 2.1 Let I (r) be a non-negative non-increasing on the interval (0, r0),
r0 > 0 function satisfying the condition

I (r) < θI (rε (r)) +G (rε (r)) , 0 < θ < 1, (12)

where ε (r) is a measurable function, 0 < c0 < ε (r) < 1 is such that

K (r) ≡ (ϕ (r))−1 rε (r) < τ < rinf ϕ (τ) ≥ ν > 0, ϕ (r) ≡ 1− ε (r) , (13)

and G (r) is measurable and locally bounded. Then the following alternative is
valid. Either I (ri) < c7G (ri) for some sequence ri → 0, or I (r) sufficiently
rapidly grows as r → 0, exactly

I (r) ≥ c7 exp

c8ν ln (θ + δ)−1

r0∫
r

dτ

τ (1− ε (τ))

 I (r0) , 0 < δ < 1− θ, (14)

where c7, c8 > 0 are constants. In particular, the last estimate also holds in
the case of boundedness of G (r) for any unbounded function I (r) satisfying
condition (12).

Lemma 2.2 Let I (r) be a non-negative non-increasing function on the in-
terval (0, r0) satisfying the condition

I (r) ≤ (1− ϕ (r)) I (rε) + ϕ (r)G (rε) , 0 < ε < 1, r ∈ (0, r0) , (15)

where ϕ (r) is a measurable function and 0 < ϕ (r) < c0 < 1, ∀r ∈ (0, r0) . G (r)
is measurable and locally bounded. Then the following alternative is valid for
I (r).
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1. Either for some sequence ri → 0 the estimate

I (ri) < c9G (ri) , c9 <∞

is fulfilled;
2. or I (r) rapidly grows as r → 0, exactly,

I (r) ≥ c10 exp

 1− δ
ln ε−1

r0∫
r

ϕ̄ (τ) dτ

τ

 I (r0) , ∀δ > 0, ∀r ∈ (0, r0) , r0 = r0 (δ) ,

(16)
where ϕ̄ (r) is an arbitrary continuous, non-decreasing function satisfying the
inequality ϕ̄ (r) ≤ ϕ (r), ∀r ∈ (0, r0).

3 The behaviour of integral energy

Now we study behaviour of I (r) for small r.

Theorem 3.1 Let u(x) ∈ ◦W m
p,ω,loc(Ω,Γ) be a generalized solution of the

Dirichlet problem for equation (1). Suppose that the coefficients of the equa-
tion satisfy condition (2), the domain Ω satisfies the condition A). ψ (t) be a
measurable function satisfying conditions (9), and let for the function K (r)
estimate B) be fulfilled with respect to ϕ (r) = 1 − ψ (r). Then the following
alternative is valid for I (r):

1. Either I (ri) < c11 (1 +G (ri)) for some sequence ri → 0, where c11 <∞
is a constant;

2. or I (r) grows rapidly as r → 0, exactly

I (r) > c12 (γ) exp

c0ν ln (k0 + γ)−1

r0∫
r

dτ

τϕ (τ)

 , ∀r < r′0 = r′0 (γ) , (17)

where k0 is some constant.

Proof. Substitute the test function η (x) = u (x)
(
1− ξψ(r) (r−1g (x))

)
into

integral identity (17). For simplicity, we’ll assume that the solution u (x, t) is
sufficiently smooth. Therefore we admit some formality in reasonings. Since,
these reasonings may be precise by passing to a regularized problem by the
known method (see [12]) and later tending the regularization parameter to
zero we’ll obtain the result for generalized solution. Continuing the proof of
the theorem, we use condition (2) and get∫

Ω\Ωr

ω (x) |Dmu|p dx ≤
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∫
Ω\Ωrψ(r)

c3k1ω (x)
∑
|α|≤m

|Dαu|p−1 ·
∑
|α|≤m

∑
|β|<|α|

∣∣∣Dα−βu
∣∣∣ ∣∣∣Dβξ

∣∣∣+

+
∑
|α|≤m

∑
|β|≤|α|

|f2 (x)|
∣∣∣Dα−βu

∣∣∣ ∣∣∣Dβξ
∣∣∣
 dx+

+
∫

Ωr0\Ωrψ(r)

k2ω (x)
∑

|α|≤m−1

|Dαu|p + k1ω (x)
∑
|α|≤m

|Dαu|p−1 ×

×
∑

|α|≤m−1

|Dαu|+
∑
|α|<m

|f2 (x)| · |Dαu|+ f1 (x)

 ξdx+

+
∫

Ω\Ωr0

k2ω (x)
∑

|α|≤m−1

|Dαu|p + k1ω (x)
∑
|α|≤m

|Dαu|p−1 ×

×
∑

|α|≤m−1

|Dαu|+
∑
|α|<m

|f2 (x)| |Dαu|+ f1 (x)

 ξdx. (18)

Notice that we are in the class of domains for which λp (r)→∞ as r → 0,
consequently for any δ > 0 there exists r0 = r0 (δ) such that for any r < r0

λp (r) > δ−1. Using the Young inequality with ε, from (18) we get

I (r) ≤ [I (rψ (r))− I (r)]

(
k3 (1− δp)

1−p
p +

ε

p

)
+ (p− 1) ε

1
1−pk4×

×
∫

Ωr\Ωrψ(r)

∑
|α|≤m

|f2 (x)|
p
p−1 · λ

−m−|α|
p−1

p
p (g (x)) dx+ [I (rψ (r))− I (r0)]×

×
(
k5 +

ε

p

)
+ I (r0)

(
k6 +

ε

p

)
+

(p− 1) ε
1

1−p

p
×

×
∫

Ω\Ωrψ(r)

 ∑
|α|<m

|f2 (x)|
p
p−1 · λ

−m−|α|
p−1

p
p (g (x)) dx+ |f1 (x)|

 dx. (19)

Denote G (r) ≡
∫

Ω\Ωr

[ ∑
|α|≤m

|f2 (x)|
p
p−1 · λ

−m−|α|
p−1

p
p (g (x)) dx+ |f1 (x)|] dx.

Then from (19) we get

I (r) ≤ α (δ, ε) I (rψ (r)) + A1I (r0) +B1G (rψ (r)) , (20)

where α,A1, B1 are some constants that are exactly calculated and α0 =
α (0, 0) < 1. Thus, from (20) and Lemma 2.1 we get the proof of the the-
orem.
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