
Mathematica Aeterna, Vol. 5, 2015, no. 1, 63 - 81

Comorphisms of Lie algebroids and groupoids:

a short introduction

Krzysztof Drachal

Faculty of Mathematics and Information Science
at the Warsaw University of Technology

ul. Koszykowa 75, 00 – 662 Warszawa, Poland

Abstract
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1 Introduction

The concept of comorphism in case of Lie algebroids and Lie groupoids was
first fully described by Higgins and Mackenzie [16]. However, such a concept
was tentatively discussed in some earlier works (see, for example, references in
[16]). Recently, this notion was described with a help of suitable graphs and
Lie pseudo–algebras by Chen and Liu [6].

One can be interested in the question why we do introduce comorphisms.
First of all, notice that it is well–known that a linear map of Lie algebras,
g → h, is a morphism if and only if its dual, i.e., h∗ → g∗, is a Poisson
morphism. The comorphism concept allows us to extend this result to Poisson
bundles and Lie algebroids. Secondly, the module of sections of a Lie algebroid
is a Lie pseudo–algebra, but the concepts of a Lie algebroid morphism and a Lie
pseudo–algebra morphism do not correspond. And thirdly, notice that for a Lie
algebroid the dual vector bundle possesses the structure of a Poisson bundle
and the dual of a Poisson bundle has a Lie algebroid structure. However, these
dualities are on objects only. Whereas, with a help of the comorphism concept,
they can be expanded on the whole categories.
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Moreover, according to Weinstein, comorphisms can be regarded as a re-
formulation of canonical relations of the symplectic geometry (see [16]).

We do not give detailed proofs in this papers. Indeed, most of the content
of this paper is heavily based on [16, 6] and [10], from which we extracted the
most important (in our opinion) theorems. The Reader interested in deeper
understanding should refer to the cited literature and references therein. On
the other hand, this paper is a try to present some recently developed ideas in
a reasonably simple and short draft.

2 Fundamental concepts

Now, we will remind the fundamental concepts from the theory of Lie alge-
broids and Lie groupoids. In case of any doubts, [19] is a very well–known
(and good) reference.

Definition 2.1. A morphism of Lie algebras, g and h, is a linear map
ϕ : g → h, such that ϕ([a, b]) = [ϕ(a), ϕ(b)] for every a, b ∈ g, where [·, ·]
denotes the Lie bracket.

Definition 2.2. A dual vector bundle is denoted in the following way E∗ q∗

→
M , where E

q
→ M is the initial bundle. Fibers of the dual vector bundle are,

by the definition, the dual spaces of the fibers of E (i.e., all linear functionals
on fibers of E).

Definition 2.3. Let E
q
→ M be a vector bundle and let f : N → M be

a mapping. Then, f !E
q!

→ N is called an inverse image bundle, if f !E :=
{(x, p) | f(x) = q(p)} and q!((x, p)) := p.

Definition 2.4. A canonical morphism is the following mapping f! : f !E →
E.

E

M N

q

f

Sections of f !E can be regarded as sums
∑
i αi⊗Xi, where αi ∈ C

∞(N) and
Xi ∈ ΓE. Notice also, that there exists an isomorphism of C∞(N)–modules:
C∞(N)⊗ ΓE � Γ(f !E), α⊗X 7→ (α ◦ f)X !, where X ! is a pullback of X.

Definition 2.5. A groupoid is a small category, in which every morphism
is an isomorphism.
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Unfortunately, except aesthetic elegance, this definition has few advantages.
In practical usage it gives no help. More illustrative is the reformulation in
terms of arrows. Indeed, we can also see a groupoid, denoted by G ⇉ M , as
the pair consisting of a collection of arrows G, and a base M (consisting of
objects). Then, for every x ∈ M there exists 1x ∈ G. Of course, arrows are
composable, associative and invertible. We strongly refer the Reader to the
alternative definition of a groupoid in terms of relations, which was proposed
by Zakrzewski [33, 34]. This formulation is also discussed in [26] and [3].

Definition 2.6. A Lie groupoid is a groupoid, such that:

• its source and target maps, s, t : G → M , are surjective submersions
(i.e., differentiable surjections, which differentials are also surjections),

• its inclusion map, M ∋ x 7→ 1x ∈ G is smooth,

• the multiplication in G is smooth.

Now, we will present some examples of Lie groupoids.

Example 2.7. Let M be an arbitrary manifold. Let s = idM = t and let
every element be a unity.

Example 2.8. Let G ×M → M be a smooth action of a Lie group on a
manifold M . Let s := prM and t : G ×M → M . Let i : x 7→ 1x = (1, x)
and (g2, y)(g1, x) := (g2g1, x), where y = g1x. Let (g, x)−1 := (g−1, gx). Then,
G×M is so called an action groupoid.

Example 2.9. Let E
q
→ M be a vector bundle. Consider Φ(E), the set of

all vector space isomorphisms ξ : Ex → Ey, where x, y ∈ M . Let s(ξ) := x,
t(ξ) := y and i : x 7→ idEx

. Let the multiplication be defined as a composition
of mappings and let the inverse be defined as an inverse of mappings. Such a
Lie groupoid is called a frame groupoid.

Example 2.10. Consider U ⊂ M and V ⊂ M , where M is a manifold.
Consider also a diffeomorphism ϕ : U → V . Denote by j1

xϕ the first order jet of
ϕ at x and denote by J1(M,M) the set of all first order jets. Then, J1(M,M)
can be given a Lie groupoid structure. Indeed, let s(j1

xϕ) := x, t(j1
xϕ) = ϕ(x)

and j1
ϕ(x)ψ · j

1
xϕ = j1

x(ψ ◦ ϕ). (It is isomorphic to Φ(TM), i.e., consider the

following mapping j1
xϕ 7→ Txϕ.)

Definition 2.11. A morphism of Lie groupoids, (ϕ, f) : G ⇉ M → H ⇉
N , is a pair consisting of smooth mappings ϕ : G→ H and f : M → N , such
that

• sH ◦ϕ = f ◦sG and tH ◦ϕ = f ◦ tG, where s, t are source and target maps
respectively,
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• ϕ(hg) = ϕ(h)ϕ(g) for every h, g ∈ G that can be composed (multiplied).

Definition 2.12. If the assumption of a smoothness in the above definition
is dropped, one obtains the definition of a morphism of groupoids.

Definition 2.13. A Lie algebroid is defined as triple consisting of

• a vector bundle E
q
→M ,

• an anchor mapping a : E → TM ,

• and a Lie bracket [·, ·] : ΓE × ΓE → ΓE, such that

– [X, fY ] = f [X, Y ] + (a(X)f)Y for every f ∈ C∞(M) and X, Y ∈
ΓE,

– a([X, Y ]) = [a(X), a(Y )].

We remind that a Lie bracket means an operator, which is R–bilinear,
alternating and satisfying the Jacobi identity. The Jacobi identity is usually
written in the following way: [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0. However,
requiring adab := [a, b] to be a derivation, i.e., to fulfil the following rule
ada[b, c] = [adab, c] + [b, adac], gives a conceptually better definition [13].

Now, we will present two examples of Lie algebroids.

Example 2.14. Every Lie algebra over a point.

Example 2.15. A tangent bundle, TM , with the identity as the anchor.

Definition 2.16. A morphism of vector bundles, E1
q1

→ M and E2
q2

→ N ,
is defined as a pair (f, g), such that

• g ◦ q1 = q2 ◦ f ,

• for every p ∈ M the mapping q−1
1 ({p})→ q−1

2 ({g(x)}) induced by f is a
linear mapping of vector spaces.

E1 E2

NM

f

q2q1

g

Notice, that a morphism of vector bundles induces a morphism of modules
of sections only in base–preserving case (i.e., if g = idM).
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Definition 2.17. A morphism of Lie algebroids is defined as a pair (ϕ, f)
satisfying the following conditions. In particular, let E1 be a Lie algebroid on
a base M and let E2 be a Lie algebroid on a base N . Now, consider a vector
bundles morphism, such that

• a1◦ϕ = T (f)◦a2, i.e., the anchor is preserved, where T (f) : TN → TM ,

• for X, Y ∈ ΓE2, if ϕ!(X) =
∑
i ui ⊗ Xi and ϕ!(Y ) =

∑
j vj ⊗ Yj, then

ϕ!([X, Y ]) =
∑
i,j uivj⊗ [Xi, Yj] +

∑
j a2(X)(vj)⊗Yj−

∑
i a2(Y )(ui)⊗Xi,

i.e., the bracket is preserved.

E2 E1

N M

ϕ

q2 q1

f

As a result, we obtain a category of Lie algebroids, which we will denote
by LA.

Definition 2.18. A Lie pseudo–algebra is defined as an A–module C, such
that

• A is a commutative and unitary k–algebra,

• there exists a Lie bracket [·, ·] on C,

• there exists an anchor a : C → DerA,

• [X, fY ] = f [X, Y ] + (a(X)f)Y ,

• a([X, Y ]) = [a(X), a(Y )],

for every X, Y ∈ C and every f ∈ A.

Sometimes, (if k = R) a Lie pseudo–algebra is called a Lie–Rinehart algebra
(especially in cohomology theories). Such algebras were introduced by Herz in
1953 [15].

The notion of a Lie pseudo–algebra is a generalization of a Lie algebroid
concept. In particular, a vector bundle is replaced by a module C. Notice,
that due to the well–known Serre–Swan theorem [24, 27, 21] the category of
smooth vector bundles on M is equivalent to the category of finitely generated
projective modules over C∞(M).

We remind that a module is called finitely generated, if it has a finite
generating set. In other words, suppose that C is a left A–module. Then, there
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exist c1, . . . , cn ∈ C, such that for an arbitrary c ∈ C there exist a1, . . . , an ∈ A,
such that c = a1c1 + · · ·+ ancn.

The projectivity of a module can be defined in various ways (see, for ex-
ample, [21]). For the purpose of this paper, we would call an A–module C
projective, if there exist {ci ∈ C | i ∈ I} and {hi ∈ Hom(C, A) | i ∈ I}, such
that for an arbitrary c ∈ C we can write c =

∑
i∈I hi(c)ai and hi(c) , 0 for at

least finite number of i–s. In other words, a projective module posses a dual
basis.

Notice also, that an arbitrary Lie algebroid (E,M) gives rise to a Lie
pseudo–algebra (Γ(E), C∞(M)).

Definition 2.19. A morphism of modules, A–module C and B–module D,
where A and B are unitary, commutative, k–algebras, is defined as a pair
(ϕ, f), such that

• f : A→ B is a morphism of corresponding algebras,

• ϕ : C → D is an additive mapping (i.e., ϕ(p1 + p2) = ϕ(p1) + ϕ(p2) for
every p1, p2 ∈ C) and ϕ(ap) = f(a)ϕ(p) for every a ∈ A and p ∈ C.

As a result, we obtained the category, further denoted by Mod.
Now, let (C, A) and (D, B) be two Lie pseudo–algebras.

Definition 2.20. A morphism of Lie pseudo–algebras, (ϕ, f) : (C, A) →
(D, B), is defined as a morphism of modules C and D, such that

• f(aC(X)(α)) = aD(ϕ(X))(f(α)) for every α ∈ A and every X ∈ C, where
aC and aD are anchors,

• ϕ([X1, X2]) = [ϕ(X1), ϕ(X2)] for every X1, X2 ∈ C.

As a result, the category LPA is obtained.

Definition 2.21. A Poisson bracket is a Lie bracket, which also acts as a
derivation.

Definition 2.22. A Poisson bundle is a pair consisting of a vector bundle
(E,M) and a Poisson bracket {·, ·} : C∞(E) × C∞(E) → C∞(E), such that
fiberwise linear functions from C∞(E) are a subalgebra with respect to this
bracket.

By fiberwise linearity of f ∈ C∞(E) we understand that f(ap) = af(p).
Notice also, that the collection of fiberwise functions is isomorphic to Γ(E∗).

Definition 2.23. A morphism of Poisson bundles, denoted by (ϕ, f) :
(E1,M) → (E2, N), is defined as a morphism of vector bundles, such that
ϕ : E1 → E2 is a Poisson mapping (i.e., a mapping α 7→ α ◦ ϕ preserves the
bracket for every α ∈ C∞(E2)).
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3 Comorphisms

Now, we will sketch the idea of comorphisms. Comorphisms will consist of
certain pairs. Similarly as in [16], we will denote such pairs with semicolons,
i.e., by (·; ·), in order to distinguish them from morphisms, which will be
denoted with colons, i.e., (·, ·).

Definition 3.1. A comorphism of vector bundles, E1
q1→ M and E2

q2→ N ,
is defined as a pair (ϕ; f), such that

• f : N → M is a smooth mapping,

• ϕ : f !E1 → E2 is a vector bundle morphism,

i.e., the below diagram commutes.

E1 f !E1

NM

E2

N

f!

f

ϕ

This comorphism will be denoted by (ϕ; f) : (E1,M)
c
→ (E2, N). We will

also emphasise by the symbol
c
→ that the mapping is a comorphism.

Of course, such defined comorphisms can be composed, i.e., consider (ϕ; f) :
(E1,M)

c
→ (E2, N) and (ψ; g) : (E2, N)

c
→ (E3, P ). Then, (ψ; g) • (ϕ; f) :

(E1,M)
c
→ (E3, P ), where (ψ; g)•(ϕ; f) := (ψ◦g!(ϕ); f ◦g) is the composition.

As a result, the category
←−−
V B is obtained.

If f = idM , then (ϕ; f) is called a base–preserving comorphism over M .
(Notice that in such a case, it is just a morphism of vector bundles over M .)

Base–preserving comorphisms over M , denoted by
←−−
V BM , form a subcate-

gory of
←−−
V B.

Let E∗
1 be a vector bundle dual to a vector bundle E1. Let E∗

2 be a vec-
tor bundle dual to a vector bundle E2. Let (ϕ, f) : (E1,M) → (E2, N) be a
morphism of vector bundles. Consider ϕ! : E1 → f !E2 and (ϕ!)∗ : (f !E2)∗ →
E∗

1 . Of course, (f !E2)∗ can be identified with f !(E∗
2). Then, a comorphism

(ϕ, f)∗ := ((ϕ!)∗; f) : (E∗
2 , N)

c
→ (E∗

1 ,M) is obtained. Such a construction
gives a contravariant functor ∗ from the category of vector bundles with mor-

phisms to
←−−
V B.

Let (ϕ; f)∗ := (f! ◦ ϕ
∗, f) : (E∗

2 , N) → (E∗
1 ,M) be such that the below

diagram commutes.
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E∗
2 (f !E1)∗ f !(E1)∗ E∗

1

N N N M

ϕ∗

� f!

f

∗ is a contravariant functor from
←−−
V B to the category of vector bundles

with morphisms. As a result, mutually inverse functors are obtained. In other
words, the considered categories are opposite to each other. This is also true,
even if we restrict to base–preserving subcategories.

Let us denote by B ⊗A C the B–module obtained from an A–module C by
changing the base algebra.

Definition 3.2. A comorphism of modules consists of a module morphism
ϕ : C → A ⊗B D and an algebra morphism f : B → A. It will be denoted by
(ϕ; f) : (C, A)

c
→ (D, B).

Of course, comorphisms of modules can be composed, i.e., (ψ; g)• (ϕ; f) :=
(A ⊗B ψ ◦ ϕ; f ◦ g), where A ⊗B ψ denotes the induced morphism. In other
words, consider ψ : C → D, and then consider A ⊗B ψ : A ⊗B C → A ⊗B D.

As a result, the category
←−−
Mod is obtained.

However, in order to obtain a duality, we have to restrict to finitely gen-

erated projective modules,
←−−−−
FMod. There is a well–known duality functor,

i.e., ∗ : C∗ = HomA(C, A). C∗ is a dual A–module. The dual morphism for
ϕ : C → D is given by ϕ∗ : D∗ → C∗.

Let (ϕ, f) be a morphism of modules (C, A) and (D, B). Then, ϕ! : B ⊗A
C → D,

∑
i bi⊗ pi 7→

∑
i biϕ(pi) is a morphism of B–modules. Of course, there

is an isomorphism I : (B⊗AC)
∗ → B⊗AC

∗. Therefore, there exists a mapping
ϕ∗ := I ◦(ϕ!)∗, ϕ∗ : D∗ → B⊗AC

∗. ϕ∗ and f : A→ B constitute a comorphism
(ϕ, f)∗ : (D∗, B)

c
→ (C∗, A). This construction gives a contravariant functor

from the category of finitely generated projective modules to the category
←−−−−
FMod.

Now, let (ϕ; f) : (C, A)
c
→ (D∗, B) be a comorphism in the category

←−−−−
FMod.

Consider ϕ♯ : D∗ α
→ A⊗BD

∗ β
→ (A⊗BD)∗ ϕ∗

→ C∗, where α(ω) := 1⊗ω and β is a
canonical isomorphism. Then, (ϕ♯, f) : (D∗, B)→ (C∗, A) is a morphism. This

construction gives a contravariant functor ∗ :
←−−−−
FMod → FMod. Moreover,

←−−−−
FMod and FMod are the opposite categories.

Now, let (ϕ, f) : (E1,M) → (E2, N) be a morphism of vector bundles.
Then, ϕ! : E1 → f !E2 induces Γ(ϕ!) : ΓE1 → Γ(f !E2). Then, (Γ(ϕ!);C(f))
is a comorphism (ΓE1, C

∞(M))
c
→ (ΓE2, C

∞(N)), where C(f) : C∞(M) →
C∞(N), F 7→ F ◦ f , f : N → M . Notice that E 7→ ΓE and (ϕ, f) 7→
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(Γ(ϕ!), C(f)) constitute a covariant functor from the category V B to the cat-

egory
←−−−−
FMod.

Let (ϕ; f) : (E1,M)
c
→ (E2, N) be a comorphism. Let ϕ♯(X) := Γ(ϕ)(1⊗

X), where X ∈ ΓE1. Then, ϕ♯ : ΓE1 → ΓE2 and (ϕ♯, C(f)) is a morphism
from (ΓE1, C

∞(M)) to (ΓE2, C
∞(N)). Therefore, a covariant functor Γ from

the category
←−−
V B to the category FMod is obtained, i.e., Γ(ϕ; f) = (ϕ♯, C(f)).

Notice that, if (ϕ; f) : (E1,M)
c
→ (E2, N) is a comorphism, then the

mapping Γ(ϕ) : C∞(N) ⊗C∞(M) ΓE1 → ΓE2 is determined by ϕ♯. In other
words, for every α ∈ C∞(N) and for every X ∈ ΓE1 it is true that Γ(ϕ)(α ⊗
X) = αϕ♯(X).

Finally, the below diagram of functors commutes. Horizontal functors are
covariant, whereas vertical functors are contravariant.

V B
←−−−−
FMod

←−−
V B FMod

Γ

∗

Γ

∗

Definition 3.3. A comorphism of Lie algebroids, (ϕ; f) : (E1,M)
c
→ (E2, N),

is defined as a comorphism of vector bundles E1 and E2, such that ϕ♯([X1, X2]) =
[ϕ♯(X1), ϕ♯(X2)] for every X1, X2 ∈ ΓE1 and the following diagram commutes.

f !E1 E2

f !TM TN

ϕ

f !(a1) a2

T (f)!

Of course, such comorphisms can be composed. As a result, the category
←−
LA is obtained.

Now, let (C, A) and (D, B) be two Lie pseudo–algebras.

Definition 3.4. A comorphism of Lie pseudo–algebras, (ϕ; f) : (C, A)
c
→

(D, B), is defined as a comorphism of modules C and D, such that

• if X ∈ C and ϕ(X) =
∑
i αi ⊗ Yi, then for every b ∈ B it is true that

aC(X)(f(b)) =
∑
i αif(aD(Yi)(b)), where aC and aD are anchors,

• if X1, X2 ∈ C, ϕ(X1) =
∑
i αi⊗Y1i, ϕ(X2) =

∑
j βj⊗Y2j, then ϕ([X1, X2]) =∑

i αiβj ⊗ [Y1i, Y2j] +
∑
j aC(X1)(βj)⊗ Y2j −

∑
i aC(X2)(αi)⊗ Y1i.
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Of course, also such comorphisms can be composed. As a result, the cate-

gory
←−−−
LPA is obtained.

Let (C, A) be a Lie pseudo–algebra. Consider d :
∧k C∗ →

∧k+1 C∗ (k ≥ 0)
such that

• d ◦ d = 0,

• (df)(X) = (a(X))(f) for every f ∈ A and X ∈ C, where a is an anchor,

• (dp)(X ∧Y ) = (a(X))(p(Y ))− (a(Y ))(p(X))−p([X, Y ]) for every p ∈ C∗

and every X, Y ∈ C,

• d(p1 ∧ · · · ∧ pn) = dp1 ∧ p2 ∧ · · · ∧ pn · · ·+ (−1)n−1p1 ∧ · · · ∧ pn−1 ∧ dpn.

Definition 3.5. Such a mapping d will be called an exterior differential
operator.

Theorem 3.6. (ϕ; f) : (C, A)
c
→ (D, B) is a comorphism of Lie pseudo–

algebras, if and only if ϕ∗ : D∗ → C∗ satisfies the following condition dD ◦ϕ
∗ =

ϕ∗ ◦ dC, where ϕ∗ is considered as a mapping
∧kD∗ →

∧k+1 C∗. In other
words, dC(f(b)) = ϕ∗(dD(b)) for every b ∈ B and dC(ϕ∗(p)) = ϕ∗(dD(p)) for
every p ∈ D∗.

Theorem 3.7. (ϕ, f) : (E1,M)→(E2, N) is a morphism of Lie algebroids,
if and only if it is a vector bundle morphism and ϕ̃∗ : Γ(

∧k E∗
2) → Γ(

∧k E∗
1)

satisfies the following condition dE1
◦ ϕ̃∗ = ϕ̃∗ ◦ dE2

, i.e., ϕ̃∗ = f ∗ : C∞(N) �
Γ(

∧0 E∗
2)→ Γ(

∧0 E∗
1) � C∞(M).

Definition 3.8. An (infinitesimal) action of E on f , where E is a Lie
algebroid on M and f : N → M is a smooth mapping, is understood as a
mapping ΓE ∋ X 7→ X† ∈ X(N), such that

• (X + Y )† = X† + Y †,

• (αX)† = (α ◦ f)X†,

• [X, Y ]† = [X†, Y †],

• X†(α ◦ f) = a(X) ◦ f ,

for every α ∈ C∞(M) and every X, Y ∈ ΓE.

Definition 3.9. An action Lie algebroid (or: transformation Lie algebroid),
corresponding to X 7→ X† is, by the definition, a Lie algebroid structure defined
on the pullback vector bundle f !E, such that

• the anchor is defined in the following way f !E → TN , (pN , X) 7→
X†(pN ),
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• the bracket on Γ(f !E) � C∞(N) ⊗C∞(M) ΓE is defined in the following

way [
∑
i αi⊗Xi,

∑
j βj ⊗ Yj] =

∑
i,j αiβj ⊗ [Xi, Yj] +

∑
i,j αiX

†
i (βj)⊗ Yj −∑

i,j βjY
†
j (αi)⊗Xi.

In such a case, f !E is denoted by E X f .

Definition 3.10. An action morphism is a morphism of Lie algebroids,
(ϕ, f) : (E2, N) → (E1,M), such that ϕ! : E2 → f !E1 is an isomorphism of
vector bundles.

Now, we will show another look on a comorphism of Lie algebroids, which
can serve as a definition (of course, an equivalent to the previous one). For an
action morphism, (ϕ!)−1 : f !E1 → E2 and f : N → M constitute a comorphism
of Lie algebroids.

Theorem 3.11. Let (ϕ; f) : (E1,M)
c
→ (E2, N) be a comorphism of Lie

algebroids. Then, Γ(a2) ◦ϕ♯ : ΓE1 → X(N) is an infinitesimal action of E1 on
f . Moreover, ϕ : f !E1 → E2 is a Lie algebroid morphism from E1 X f to E2.

Definition 3.12. A comorphism of Lie groupoids, (ϕ; f) : G⇉M
c
→ H ⇉

N , is defined as a triple consisting of

• a smooth map f : M → N ,

• an infinitesimal action of G on f ,

• a base–preserving morphism ϕ : G X f → H.

Of course, such comorphisms can be composed. Therefore, the category
←−
LG is obtained.

It should be mentioned that every comorphism of Lie groupoids can be also
understood as a morphism of certain C∗–algebras (see, for example, [25]).

Definition 3.13. (ϕ; f) : G ⇉ M
c
→ H ⇉ N is called a comorphism of

groupoids, if

• f : N → M ,

• ϕ : N ×f G→ H, where N ×f G := {(p, g) | p ∈ N, f(p) = sG(g)},

and the following diagram commutes

N ×f G H

N N

ϕ

pr
N

sH

idN

and, moreover, the following conditions hold:
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• ϕ(p, f(p)) = p for every p ∈ N ,

• f ◦ tH ◦ ϕ(p, g) = tG(p) for every (p, g) ∈ N ×f G,

• ϕ(p, gh) = ϕ(p, g)ϕ(tH ◦ ϕ(p, g), h) for every (p, g) ∈ N ×f G and (tH ◦
ϕ(p, g), h) ∈ N ×f G.

Now, let (C, A) be a Lie pseudo–algebra. Let I ⊆ A be an ideal of A. Let
CI := {p ∈ C | ∀a∈I [p, a] ∈ I}. Let IC := {

∑
i aipi | ai ∈ I, pi ∈ C}. Of

course, IC ⊂ CI . Let CI := CI/IC. Then, (CI , A/I) is a Lie pseudo–algebra
with structures inherited from (C, A). It will be called I–restriction of (C, A).

Example 3.14. Let N be a submanifold of M . Let I = {f ∈ C∞(M) |
∀p∈N f(p) = 0} ⊂ C∞(M). Then, C∞(M)/I � C∞(N) and (X(M))I = X(N).
So it is a restriction of tangent vector fields on a submanifold.

Let ψ : A → B be an algebra morphism. Then, ψ̃ : A ⊗ B → B is
understood as a mapping a⊗ b 7→ ψ(a)b.

Let (C, A) and (C, A) be two Lie pseudo–algebras and let ψ : A→ B be a
morphism. Consider P := (C ⊗ B)⊕ (A⊗D). Consider also I = ker ψ̃.

Definition 3.15. An I–restriction of (P, A ⊗ B) will be called ψ–sum of
(C, A) and (D, B). It will be denoted by (C ⊕ψ D, B).

C ⊕ψ D is a B–submodule of (C ⊗A B)⊕D. Moreover,
∑
iXi ⊗A bi + Y ∈

(C ⊕ψ D, B)⇔ ∀a∈A

∑
i ψ([Xi, a])bi = [Y, ψ(a)].

Consider ϕ̃ : C ⊗A B → D, X ⊗A b 7→ ϕ(X)b.

Theorem 3.16. (ϕ, f) : (C, A) → (D, B) is a morphism of Lie pseudo–
algebras, if and only if {p + ϕ̃(p) | p ∈ C ⊗A B} ⊂ (C ⊗A B) ⊕ D is a Lie
pseudo–subalgebra of C ⊕f D.

Theorem 3.17. (ϕ; f) : (C, A)
c
→ (D, B) is a comorphism of Lie pseudo–

algebras, if and only if {ϕ(Y ) + Y | Y ∈ C} ⊂ (D ⊗B A)⊕ C is a Lie pseudo–
subalgebra of D ⊕f C.

Consider two Lie algebroids (E1,M) and (E2, N). Let f : M → N .

Definition 3.18. E1 ⊕f E2 := {(p1, p2) ∈ E1 ⊕ f
!E2 | p1 ∈ q

−1
1 ({x}), p2 ∈

q−1
2 ({f(x)}), T (f) ◦ a1(p1) = a2(p2), x ∈ M} will be called f–sum of Lie alge-

broids (E1,M) and (E2, N). (By a1 and a2 we denoted anchors.)

Theorem 3.19. (ϕ, f) : (E1,M) → (E2, N) is a morphism of Lie alge-
broids, if and only if G := {(p, ϕ(p)) | x ∈ M, p ∈ q−1

1 ({x})} ⊂ E1 ⊕ f
!E2 is

contained in E1 ⊕f E2 and Γ(G) is a Lie subalgebra of Γ(E1 ⊕f E2).
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Theorem 3.20. (ϕ; f) : (E1,M)
c
→ (E2, N) is a comorphism of Lie alge-

broids, if and only if G := {(ϕ(p), p) | x ∈ N, p ∈ q−1
1 ({f(x)})} ⊂ E2⊕ f

!E1 is
contained in E2 ⊕f E1 and Γ(G) is a Lie subalgebra of Γ(E2 ⊕f E1).

Definition 3.21. Let G ⇉ M and H ⇉ N be two groupoids. Consider a
groupoid structure G×H ⇉M ×N defined by the following conditions

• sG×H(p, q) := (sG(p), sH(q)),

• tG×H(p, q) := (tG(p), tH(q)),

• (p, q)(r, s) := (pr, qs), if p and r are composable and q and s are com-
posable, where p, r ∈ G and q, s ∈ H.

Then, G×H ⇉ M ×N will be called a direct product of groupoids G⇉ M
and H ⇉ N .

Let f : M → N . Let G×fH := {(p, q) ∈ G×H | sH(q) = f ◦sG(p), tH(q) =
f ◦ tG(p)}. Then, G ×f H will be called f–product of groupoids G ⇉ M and
H ⇉ N .

Theorem 3.22. (ϕ, f) : G⇉M → H ⇉ N is a morphism of groupoids, if
and only if {(p, ϕ(p)) | p ∈ G} is a subgroupoid of G×f H.

We remind that H ⇉ N is called a subgroupoid of the groupoid G ⇉ M ,
if H ⇉ N is a groupoid and there exists an injective groupoid morphism
i : H ⇉ N → G⇉M .

Now, let f : N →M . Let ϕ : N ×f G→ H .

Theorem 3.23. (ϕ; f) : G⇉M
c
→ H ⇉ N is a comorphism of groupoids,

if and only if {(ϕ(p, q), q) | p ∈ N, q ∈ s−1
G (f(p))} is a subgroupoid of H ×f G.

Now, consider a Poisson bundle (E,M). Let α denote a fiberwise linear
function from C∞(E), corresponding to α ∈ ΓE∗. (Notice that the collection
of fiberwise functions is isomorphic to ΓE∗.) Let α, β ∈ ΓE∗. Then, consider
ΓE∗ ∋ [α, β] := [α, β] = {α, β}. The Hamiltonian vector field Hα = {α, ·} ∈
ΓTE projects under q : E → M to the vector field a(α) on M . As a result,
a : E∗ → TM finishes making E∗ a Lie algebroid on M .

Conversely, if E is a Lie algebroid on M , then (E∗,M) can be made a
Poisson bundle. Indeed, let X, Y ∈ ΓE and let α, β ∈ C∞(M). Then, consider
{X, Y } := [X, Y ], {X,α ◦ q} := a(X)(α) ◦ q and {α ◦ q, β ◦ q} := 0. Next,
extend to all functions E∗ → R by differentiation.

Details of the above constructions can be found, for example, in [7].

Theorem 3.24. Let (ϕ, f) : (E1,M)→ (E2, N) be a morphism of Poisson
bundles. Then the dual vector bundle comorphism (ϕ, f)∗ : (E∗

2 , N)
c
→ (E∗

1 ,M)
is a comorphism of Lie algebroids.
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Theorem 3.25. Let (ϕ; f) : (E1,M)
c
→ (E2, N) be a comorphism of Lie

algebroids. Then the dual vector bundle morphism (ϕ; f)∗ : (E∗
2 , N)→(E∗

1 ,M)
is a morphism of Poisson bundles.

Definition 3.26. A comorphism of Poisson bundles, (ϕ; f) : (E1,M)
c
→

(E2, N), is defined as a comorphism of the underlying vector bundles, such
that if α and β are fiberwise linear functions from C∞(E2), such that α ◦ ϕ =∑
i ui ⊗ Fi and β ◦ ϕ =

∑
j vj ⊗ Gj, where ui, vj ∈ C

∞(N) and Fi and Gj are
fiberwise linear functions from C∞(E1), then {α, β}◦ϕ =

∑
i,j uivj⊗{Fi, Gj}+∑

j b(β)(vj)⊗Gj −
∑
i b(β)(ui)⊗ Fi, where b : E∗

2 → TN is an anchor.

Theorem 3.27. Let (ϕ; f) : (E1,M)
c
→ (E2, N) be a comorphism of Pois-

son bundles. Then, the dual vector bundle morphism (ϕ; f)∗ : (E∗
2 , N)→(E∗

1 ,M)
is a morphism of Lie algebroids.

Theorem 3.28. Let (ϕ, f) : (E1,M) → (E2, N) be a morphism of Lie
algebroids. Then, the dual vector bundle comorphism (ϕ, f)∗ : (E∗

2 , N)
c
→

(E∗
1 ,M) is a comorphism of Poisson bundles.

Finally, notice that every comorphism can be factored into an infinitesimal
action and a base–preserving morphism.

4 Integration of a Lie algebroid

Now, we will show the connection of comorphisms and the problem of ”inte-
grating” a Lie algebroid. Indeed, when a groupoid is given, we can construct
its infinitesimal analog – an algebroid. It is interesting to discuss the opposite
construction.

First, we remind the well–known Lie theorems, which are motivation for
the above question.

Theorem 4.1 (The first Lie theorem). Let G be a Lie group and let g be
its Lie algebra. Let h be a Lie subalgebra of g. Then, there exists a unique
connected Lie subgroup H of G, which Lie algebra is h.

Theorem 4.2 (The second Lie theorem). Let G and H be two Lie groups
and let G be simply connected. Let g and h be corresponding Lie algebras and
let ϕ : g → h be a morphism. Then, there is a unique morphism F : G → H,
which induces ϕ.

Theorem 4.3 (The third Lie theorem). Let g be a Lie algebra. Then, there
exists a Lie group, which Lie algebra is isomorphic to g.

Definition 4.4. s–fiber at x is understood as the collection of all arrows
beginning in x.
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One can associate to every Lie groupoid some Lie algebroid. However, it is
not always possible to associate a Lie groupoid to the given Lie algebroid [10].

In case of a Lie group G, one has the vector space TeG, where e is a unit
in G. Then, right invariant vector fields can be considered, on which a Lie
bracket [·, ·] can be defined. As a result, one obtains a Lie algebra g. However,
in the case of a Lie groupoid G⇉M , a unity might be not unique. Instead of
a vector space, one considers rather a vector bundle A, defined in the following
way. Its fiber at x ∈M consists, by the definition, of a tangent space at a unit1x of a s–fiber at x.

Now, let t : G→ M be a target map. Then, Tt : TG→ TM . An anchor a
is constructed by restricting Tt to A. (It is obvious that A is a subbundle of
TG.)

Further, a bracket can be defined on ΓA. Indeed, it can be shown that ΓA
and right invariant vector fields on G are isomorphic.

Definition 4.5. A Lie algebroid constructed in the above way, i.e., (A, a, [·, ·]),
is called a Lie algebroid of the Lie groupoid G⇉M .

Definition 4.6. An integrable Lie algebroid is such a Lie algebroid that is
isomorphic to the Lie algebroid of a certain Lie groupoid.

Now, consider a Lie algebroid, for which A is a vector bundle over M and
a in an anchor.

Definition 4.7. A–path is defined as a pair of paths (ρ, γ), where ρ : I → A
and γ : I →M , such that

• ρ(τ) ∈ Aγ(τ) for every τ ∈ I,

• a(ρ(τ)) = dγ
dτ

(τ) for every τ ∈ I.

Consider an equivalence relation ∼ on M , such that x ∼ y, if and only if
there exists a path ρ with a base path γ, where γ connects x and y.

Definition 4.8. Let G⇉M be a Lie groupoid. Let g : [0, 1]→ G be a path
in G. Then, g is called a G–path, if

• g(0) = 1x,
• s(g(τ)) = x for every τ ∈ [0, 1].

In other words, a G–path starts in a unit and lays in a s–fiber.

The space of A–paths and the space of G–paths can be both made topo-
logical spaces equipped with C2 topologies.
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Theorem 4.9. If G⇉M integrates the given Lie algebroid, then G–paths
and A–paths are homeomorphic.

Notice that a certain relation of homotopy for A–paths can be defined.
With a help of this relation a groupoid of ”homotopic” A–paths can be defined.
Such a groupoid is called in literature a Weinstein groupoid.

Theorem 4.10. A Lie algebroid is integrable, if and only if its Weinstein
groupoid admits a smooth structure.

Definition 4.11. A section of a Lie algebroid is called complete, if the
anchor maps such a section to a complete vector field.

Definition 4.12. A comorphism of integrable Lie algebroids is called com-
plete, if the pullback on sections takes complete sections to complete sections.

Definition 4.13. A comorphism of integrable Lie algebroids is called inte-

grable, if it is an image of the Lie functor
←−
LG→

←−
LA.

Definition 4.14. A source simply connected Lie groupoid is, by the def-
inition, a Lie groupoid, which source fibers (i.e., s−1(x), x ∈ M) are simply
connected.

Theorem 4.15. The path construction (i.e., the construction of a Wein-
stein groupoid) is a functor from integrable Lie algebroids with complete comor-
phisms to source simply connected Lie groupoids with comorphisms. Moreover,
it is an inverse of the Lie functor, so, as a result, these two categories are
equivalent.

Finally, let A be an integrable Lie algebroid over X and let B be an inte-
grable Lie algebroid over Y . Let G and H be their integrating source simply
connected Lie groupoids respectively. Then, as a corollary from the above
theorem, we obtain that a comorphism from A to B integrates to a unique
comorphism from G to H , if and only if the comorphism from A to B is
complete.

5 Final remarks

Concepts of Lie groupoids and Lie algebroids are widely explored amongst
mathematicians and physicists. Therefore, the corresponding literature is re-
ally vast. The most important references in the context of this paper have
already been mentioned. However, the interested Reader should additionally
consult some other papers and books.

Doubtlessly, in the case of an integration of a Lie algebroid [5, 9] and [28] are
very important papers. Also, the paper [11] is strictly connected with topics
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presented here. As a historical source, [22] contains the first introduction of
the concept of a Lie algebroid. We also refer the Reader to [8].

An interesting introduction can also be found in [20]. Whereas in a short
paper [32] much emphasis is put on the idea of the symmetry in the concept of
a groupoid. Very nice and short papers, which also discuss Poisson structures
are [31] and [23]. Of course, the Reader interested more in Poisson structures
should consult the classical book [30].

Finally, we would like to mention that concepts, which we have discussed
here, have also some strong physical motivations. We refer the Reader to the
following papers [18, 12, 17]. Moreover, for example, in [1, 4, 2, 29, 14] the
Reader would find astonishing applications of groupoids in cosmology.
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