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Abstract

In this paper, we prove a new Gronwall type integral inequality, and

then apply it to investigate the Hyer-Ulams stability of the conformable

fractional differential equation.
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1 Introduction

The idea of fractional calculus is as old as traditional calculus. The history
of fractional calculus dates back to more than 300 years ago, and the original
question which led to the name fractional calculus was: what does dnf

dxn mean if
n = 1

2
. Since then, several mathematicians contributed to the development of

fractional calculus, including Riemann−Liouville fractional operator, Caputo

fractional operator, Grunwald−Letniko fractional operator, these of the very
famous are for these fractional order operator have different properties, the
literature has been given in [1−2]. Until recently, research on fractional calcu-
lus was confined to the filed of mathematics. However in the last two decades,
many applications of fractional calculus in various fields of engineering, science
mathematics and economics have been found. As a result, fractional calculus
has become an important topic for researchers in various fields. However, the
authors in [3] define a new well-behaved simple fractional derivative called the
conformable fractional derivative, depending just on the basic limit definition
of the derivative. Namely, for a function f : (0,∞) → ℜ the conformable
fractional derivative of order 0 < α ≤ 1 of f at t > 0 was defined by

Tαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
.

1E-mail:409731350@qq.com
2Corresponding author, E-mail:yqfeng6@126.com
3E-mail:811560136@qq.com



486 Anli Zheng etc.

If f is α-differentiable in some (0, a), a > 0, and lim
t→0+

f (α)(t) exists, then define

f (α)(0) = lim
t→0+

f (α)(t).

As same as the fractional calculus, the development of the Hyers-Ulam
stability also has a long history. In 1940, Ulam posed a problem concern-
ing the stability of functional equations: Give conditions in order for a linear
function near an approximately linear function to exist. A year later, Hyers[4]

gave an affirmative answer. After Hyers’s result, many mathematicians make
great efforts, they extended results to discuss the differential equations. By
the use of the Gronwall-Bellman type inequalities and the technique of weakly
Picard operators, I. A. Rus [5−6] investigated the Hyers-Ulam stability of dif-
ferential and integral equations. The Gronwall type integral inequalities and
their applications can be seen in [7− 12] and references therein.

Motivated by the above results, in this paper, we prove a new Gronwall
type integral inequality, and then, use it to study the Hyers-Ulam stability of
the conformable fractional differential equation.

This paper will be divided into several parts as follows: The definitions,
notations and related results are presented in section 2. In section 3, we prove
a generalized Gronwall type integral inequality for the conformable fractional
calculus. In section 4, the Hyers-Ulam stability of the conformable fractional
differential equation is discussed.

2 Preliminary Notes

In this section, for completeness, we introduce the definitions of the con-
formable fractional derivative. Readers can find the detailed properties of
the conformable fractional differential operators in [13− 14].
Definition 2.1 The (left)fractional derivative staring from a of a function
f : [a,∞) → ℜ of order 0 < α ≤ 1 is defined by

Tαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

=

∫ b

a

f(x)dα(x, a)

=

∫ b

a

(x− a)α−1f(x)dx.

(1)

Lemma 2.2 Assume α ∈ (0, 1], f is differentiable for t > a, then for the all
t > a we have

Tαf(t) = (t− a)1−αf
′

(t).

Definition 2.3 Let α ∈ (0, 1] and f : (a, b) → ℜ be differentiable, then for all
t > a, we have

IaαT
a
α = f(t)− f(a).
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Lemma 2.4 Let f, g : [a, b] → ℜ be two functions, such that fg is differen-
tiable. then∫ b

a

f(x)T a
α(g)(x)dα(x, a) = fg|ba −

∫ b

a

g(x)T a
α(f)(x)dα(x, a).

Let α ∈ (0, 1], G := {(t, y) ∈ ℜ, t ∈ [a, t0), y ∈ ℜ}, consider the following
initial value problem of the comfortable differential equation

T a
αy(t) = Ay(t) + f(t, y(t)), y(a) = y0 (2)

where y, f : G :→ ℜ are real-valued functions and A is constant.
Lemma 2.5 The general solution of the fractional nonhomogeneous equation
(2) is expressed by

y(t) = y0e
A

(t−a)α

α +

∫ t

a

eA
(t−a)α

α e−A
(s−a)α

α (s− a)α−1f(t, y(t))ds.

3 A new Gronwall type integral inequality

In this section, we establish a new Gronwall type integral inequality, which
generalize previous result in literature.

The main theorem in this section is the following.
Theorem 3.1 If for any t ∈ [a, b],

x(t) ≤ h(t) +

∫ t

a

u(s)x(s)(s− a)α−1ds

where x(t), h(t), u(t) are nonnegative and continuous , u(t) is nondecreasing,
h(t) is differentiable on[a, b], then

x(t) ≤ h(t) +

∫ t

a

u(r)h(r)e
∫
t

r
u(s)(s−a)α−1dsdr. (3)

Proof. Let us consider the function

R(t) = h(t) +

∫ t

a

u(s)x(s)(s− a)α−1ds. (4)

Then we have R(a) = h(a) and x(t) ≤ R(t) ,

T a
αR(t) = T a

αh(t) + u(t)x(t) ≤ T a
αh(t) + u(t)R(t).
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By multiplication with K(t) = e−
∫
t

a
u(s)(s−a)α−1ds, we obtain

T a
α(e

−

∫
t

a
u(s)(s−a)α−1dsR(t)) ≤ e−

∫
t

a
u(s)(s−a)α−1dsT a

αh(t).

With the help of Definition 2.3, Lemma 2.4 and R(a) = h(a), since R(t)K(t)
is differentiable on [a, b], then

R(t)e−
∫
t

a
u(s)(s−a)α−1ds − h(a) ≤

∫ t

a

e−
∫
r

a
u(s)(s−a)α−1dsT a

αh(r)dα(r, a).

R(t)e−
∫
t

a
u(s)(s−a)α−1ds ≤ h(t)e−

∫
t

a
u(s)(s−a)α−1ds

−

∫ t

a

h(r)T a
αe

−

∫
r

a
u(s)(s−a)α−1dsdα(r, a)

= h(t)e−
∫
t

a
u(s)(s−a)α−1ds

+

∫ t

a

h(r)u(r)e−
∫
r

a
u(s)(s−a)α−1dsdα(r, a).

Hence

R(t) ≤ h(t) + e
∫
t

a
u(s)(s−a)α−1ds

∫ t

a

h(r)u(r)e−
∫
r

a
u(s)(s−a)α−1dsdα(r, a). (5)

Using (3) and (5), we then find

x(t) ≤ h(t) + e
∫
t

a
u(s)(s−a)α−1ds

∫ t

a

h(r)u(r)e−
∫
r

a
u(s)(s−a)α−1dsdα(r, a)

x(t) ≤ h(t) +

∫ t

a

u(r)h(r)e
∫
t

r
u(s)(s−a)α−1dsdr

This completes the proof. . �

Corollary 3.2 [14] Let x(t) : [a, b] → ℜ be nonegative and continuous, M, k >

0. If

x(t) ≤ M +

∫ t

a

kx(x)(s− a)α−1ds

then for all the t ∈ [a, b]

x(t) ≤ Mek
(t−a)α

α .

Corollary 3.3 If for any t ∈ [a, b],

x(t) ≤ M +

∫ t

a

u(s)x(s)(s− a)α−1ds
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where u(t), x(t) are nonnegative and continuous, u(t) is nondecreasing, M > 0
is a constant. Then

x(t) ≤ Me
∫
t

a
u(s)(s−a)α−1ds.

Corollary 3.4 Let x(t) : [a, b] → ℜ is a nonnegative continuous function
satisfying:

x(t) ≤ h(t) +

∫ t

a

kx(s)(s− a)α−1ds

where k > 0 is a constant and h(t) is a nonnegative differentiable function on
[a, b],then

x(t) ≤ h(t) + kek
(t−a)α

α

∫ t

a

h(s)e−k
(s−a)α

α dα(s, a) t ∈ [a, b].

4 The Hyers-Ulam stability of a conformable

fractional differential equation

In this section, we consider the Hyers-Ulam stability of a comfortable fractional
differential equation as follows

T a
αy(t) = Ay(t) + f(t, y(t)).

The main result is
Theorem 4.1 Assume the hypotheses of Lemma 2.5 hold. If f : G → ℜ
is continuous and satisfying Lipschitz condition with respect to the second
variable, i,e. there exists a constant L > 0 such that

|f(x, y1)− f(x, y2)| < L|y1 − y2|

for (x, y1) and (x, y1) ∈ G. Then, for every ε > 0 and yε(x) : [a, t0] → ℜ
satisfying

|T a
αyε(t)−Ayε(t)− f(t, yε(t))| ≤ ε, t ∈ [a, t0] (6)

there exist a solution y(t) : [a, t0] → ℜ of equation(2.1) and a constant K > 0
such that

|y(x)− yε(x)| ≤ Kε t ∈ [a, t0]

where G := {(t, y) ∈ ℜ, t ∈ [a, t0], y ∈ ℜ}, K(ε) = 1
A+L

(e(L+A) (t−a)α

α − 1)
Proof. By (6), we have

ε ≤ T a
αyε(t)−Ayε(t)− f(t, yε(t)) ≤ ε. (7)
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Definition 2.3 and the Laplace transform give

yε(t) ≤ eA
(t−a)α

α (
ε

A
+ y0)−

ε

A
+ eA

(t−a)α

α

∫ t

a

e−A
(s−a)α

α f(s, y(s))dα(s, a). (8)

By Lemma 2.5,

y(t) = y0e
A

(t−a)α

α +

∫ t

a

eA
(t−a)α

α e−A
(s−a)α

α (s− a)α−1f(s, y(s))ds (9)

Combing (8) with(9) we obtain

yε(t)− y(t) ≤
ε

A
(eA

(t−a)α

α − 1) + eA
(t−a)α

α

∫ t

a

e−A
(s−a)α

α (f(s, yε(s)

− f(s, y(s))dα(s, a)

(10)

On the other hand,

T a
αyε(t)− Ayε(t)− f(t, yε(t)) ≥ −ε

In the same manner, we have

yε(t)− y(t) ≥ −
ε

A
(eA

(t−a)α

α − 1)− eA
(t−a)α

α

∫ t

a

e−A
(s−a)α

α (f(s, yε(s)

− f(s, y(s))dα(s, a)

(11)

A combination of (10), (11) and the Lipschitz assumption on f , results yields

|yε(t)− y(t)| ≤
ε

A
(eA

(t−a)α

α − 1) + eA
(t−a)α

α

∫ t

a

e−A
(s−a)α

α |(f(s, yε(s)

− f(s, y(s))dα(s, a)|

≤
ε

A
(eA

(t−a)α

α − 1) + eA
(t−a)α

α L

∫ t

a

e−A
(s−a)α

α |(yε(s)

− y(s))|dα(s, a).

e−A
(t−a)α

α |yε(t)− y(t)| ≤
ε

A
(1− e−A

(t−a)α

α ) + L

∫ t

a

e−A
(s−a)α

α |(yε(s)

− y(s))|dα(s, a).
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In view of the corollary 3.4 , we get

e−A
(t−a)α

α |yε(t)− y(t)| ≤
ε

A
(1− e−A

(t−a)α

α ) + LeL
(t−a)α

α

∫ t

a

ε

A
(1− e−A

(s−a)α

α )

× e−L
(s−a)α

α dα(s, a)

≤
ε

A
(1− e−A

(t−a)α

α ) +
Lε

A
eL

(t−a)α

α

∫ t

a

(e−L
(s−a)α

α

− e−(A+L) (s−a)α

α )dα(s, a)

≤
ε

A
(1− e−A

(t−a)α

α ) +
Lε

A
eL

(t−a)α

α (−
1

L
e−L

(t−a)α

α

+
1

A+ L
e−(A+L) (t−a)α

α +
1

L
−

1

A+ L
)

≤
ε

A
e−A

(t−a)α

α (
L

A+ L
− 1) +

ε

A
eL

(t−a)α

α (1−
L

A + L
).

(12)

Multiplying both sides of (12) by eA
(t−a)α

α , then

|yε(t)− y(t)| ≤
ε

A
(

L

A+ L
− 1)(1− e(L+A)

(t−a)α

α )

≤
ε

A+ L
(e(L+A) (t−a)α

α − 1).

Hence K(ε) = 1
A+L

(e(L+A) (t−a)α

α − 1) . �
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