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Abstract

In this paper, we first induce the recursive formula of g-symmetric
polynomials and prove the product rule of two g-symmetric polynomials
at 0.Then differential transformation method can be applied to find
approximate solution of nonlinear g-symmetric difference equation. Last
but not least, the approximate solutions are also contrasted with the
numerical solutions to verify their accuracy.
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1 Introduction

Differential transformation method based on the Taylor series expansion
is a semi-numerical-analytic method for solving nonlinear ordinary differential
problems. It was first proposed by Zhou [1] in 1986 for the solution of linear
and nonlinear initial value problems that appear in electrical circuits. Besides,
it has been used to obtain numerical and analytical solutions of various equa-
tions [2-10]. Recently, there are many studies on the applications of it to the
damped systems in literature. For instance, Jang and Chen [11] employed
it to investigate the response of a strongly nonlinear damped system. Kuo
and Lo [12] applied it to analyze the response of a damped system with high
nonlinearity. Moreover, Hsuan-Ku Liu [13] extended the use of differential
transformation method to the case of strongly nonlinear damped ¢-difference
equations.
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With the development of g-analysis, ¢-symmetric analysis motivates the
interests of many scientists. Actually, Artur M.C. Brito da Cruz [14] has in-
troduced a wealth of knowledge about ¢g-symmetric variational calculus, which
laid a good foundation to the continue study. On the other hand, g-symmetric
quantum calculus does play an important role in various areas, such as con-
formal quantum mechanics [15] and so on. As noticed in [15], the g-symmetric
derivative let the g-exponential function have unique properties. We believe
that the g-symmetric derivative has, in general, better properties than the
h-derivative w and the g-derivative Fa)=rt) However, to the best of
our knowledge, there are no papers concerned Wltil the theory of approximate
solutions for nonlinear ¢-symmetric difference equations.

This dissertation aims to extend the differential transformation method to

the nonlinear damped g-symmetric difference equation, which defined on

" = {q"|n € N} {0}

for ¢ € [0,1]. To put it precisely, the strongly nonlinear damped g-symmetric
difference equation is described as

c?ix + (27 4 eprz)dyr + Qx4+ 2% = 0. (1)

with z(0) = a, qu(O) = b. Where, v and v represent linear damping parame-
ters, € is nonlinear parameter, {2 is the frequency of underdamped motion.
For convenience, we assume that > 7 . A, =0 and [[/_, A, = 1 for this.

2 g-symmetric polynomials

It is known that Hilger [16] proposed the calculus of time scales to make a
connection between discrete and continuous analysis. However, as to the same
problem, different derivatives result in different effects on literature. This
section will study g-symmetric polynomials on the time scale ¢ for ¢ € [0, 1]
on which ¢g-symmetric derivative is defined.

Let ¢ € [0,1] and let I be an interval (bounded or unbounded) of R con-
taining 0. We will denote by I, the set

I, :=ql .={qx:x€l}.

Note that
I, C I

Definition 2.1 ([19]) Let f be a real function defined on ¢N. The g-symmetric
difference operator of f is defined by

e = T,
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if t € ¢V\ {0}, and aAl;[f](O) := f'(0), provided f is differentiable at 0. We
usually call dy[f] the q-symmetric derivative of f.

Definition 2.2 ([17]) On a time scale T, the generalized polynomials hy(-, o) :
T — R are defined recursively as follows:

t ~
hO(ta S) = 1a hk—i—l = / hk(T> s)qua

where
k=0,1,2,--.

Definition 2.3 ([15]) Assume that f : ¢N — R is a function. The function
F which is pre-differentiable in ¢N such that

d,F(t) = f(t),Vt € ¢"

15 called a pre-antiderivative of f.
We define the indefinite integral of the function f by

[t =rw+c.

where C' is an arbitrary constant. Moreover, the definite integral is defined as

[ rwai= [ swie- [ s

Let a,b € T and a < b. For f : ¢ — R and for q €]0, 1] the g-symmetric
integral of f from a to b is given by

/ ’ f(#)dyt = F(b) — F(a),Va,b € ¢~.

Lemma 2.4 Ift" has q-symmetric derivative on ¢V, then

. tn+1
/t dqt - A—n + C,

Where

n

An:zqn_jq_j>n:()>1a2>"' .

J=0

and C is an arbitrary constant.
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tn+1

Proof. Let F(t) =
entiable. Then, we obtam

+ C, it is obviously that F(t) is q-symmetric differ-

(qt)"Jrl _l_ C . (q—lt)n+1 . C

LF@) - 1.
q ( ) qt o q_lt
B (qt)n+1 _ (q_lt)n+1
o Augt—q7h)
= "

For convenience, we assume » /_ A, =0and [[)_. A, =1 fori > j.

Theorem 2.5 On the time scale ¢N, Based on the above knowledge, after
computing the recurrence relation, the q-symmetric polynomials are described
as

th_ gk (tk—l k—l k-1 Si(tk i sk—i)
hk(t,S) T IA k2A ZBZ 1W, /{:—0,1,2
H H 1= Hn:(] n
(2)
where
An - an_jq_j7n: 071727"' 5
=0
Bl = ! - 4
q+q!
1 1 B BZ_ )
i—1 — : Bi—2' 7'2374)5?”"

[L5A, [I3A. IL5A.  II,A.

on V.
Proof. Clearly, according to the definition 2.2 and lemma 2.1, we have

hi(t,s) = t—s,
gt —s—q t+s

7 = pum— 1 pum—
dth (t> S) (q — q_l)t hO(ta S)a
t2—s* s(t—s) t2—s?
h2(t7 S) - Al - AO - q+ q_1 - S(t - 8)7

_ B 1 (qt)*—s* R
dgha(t,s) = (q_q_l)t< T s(qt — s)

hl (t, S).
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Next, we assume (2) holds when k = m,m € N, then

~ 1 _
Gss(t9) = e (et 9) = s (7109))
1 ((qt)m+l — gm+tl 8((qt)m _ Sm) i B Si((qt)m-l-l—i _ Sm+1—i)
= m - m— - i—1 i
(¢—q ")t | J B Hn 01 Ay =2 Hk -0 YA,
_1t m+1 m+1 1t 1t m+1—t _ .m+1—i
AR +«n” +Z&1 )
o An L= A, I A
_ ( qm—i-l —1 m+1)tm+1 ((qt) (q_lt)m)
(q—q7 ")t Hn Lo An 15 An
B Z B‘_l S q m i+1 _‘(q—lt)m—i—i-l))
i [[=A
m Stm_l i B Si((qt>m—i+l _ (q—lt)m—i-i-l)
= T T Tm e i-1 m—
ano1 Ay Hn:02 A S [[hmo Anlg —q7 1)t
tm Stm—l z m—1t
— — — BZ
Hnmz—ol An H;n:—02 A Z 1 m—i—1 4 m i—1 A
tm Stm—l ztm 7
- m— o m— - Bz 1l =7 . m i_ - Bm_lsm
anol A" Hn:O2 A Z n 0 ' A
tm Stm—l z m—1
- m— B m— B BZ Lgm—i—1 4 m i—
anol A" Hn:02 A Z n 0 ' A
s™ s™ Bys™ Bys™
et 4+ 5" B
Hn:Ol A" Hn:O2 A" Hn:03 A" Hn:04 A"

tm _— gm tm—l_ m—1
_ s s( s™ 1) B,

| [12 A,

83 (tm—?) _ 8m—3)

82(tm_2 _ sm—2)
[T An

— = Bm_gsm_lt + SmBm_g

_B2

[T An
m _ gm S(tm_l _gm m—1 tm i Sm—i)
= m—lA - m—2A ZBZ 1 m—i— 1A :h'm(t? S). |:|
Hn:O n Hn:O i= H =0 n

Agarwal and Bohner [18] gave the Taylor formula for functions on a general
time scale. On ¢ the Taylor formula is written as

Theorem 2.6 Let n € N. Suppose f is n times continuously differentiable
on gN. Let a,t € ¢N. Then the Taylor formula of [ near x = « is given by

F(t) = Srmd bt )y F(@)+ 7O byt 0(P)d, F(7)dy
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To develop an approximate solution of (1), the product rule of two g-polynomials
at 0 is derived.

Lemma 2.7 Let h;(t,0) and h;(t,0) be two q-symmetric polynomials at
zero. Then the product rule of two q-symmetric polynomials is

ha(t,0) 1 (t,0) = <q(;(: 1;1%;” i (£,0),
where
(g2 q Hq”“ — ¢ 20t
Proof. By
it ti tj [ An

hi t,O -
+J( ) HZn—HO 1A H H Hz-i—j 1A
then we have
i+j4—l An
hl(t,O)h](t,O) - l_llfj%h“‘?(t’o)
i+j—1 —u
— Hnj_zl Zu Oq q hi—i—j(t;O)
| [ D Dt
i1 Zn'ﬂ n—u+i,—u

_ u=0 q q h:
- n n—un—u itJ (t O)

_ o —(n+i+2)
. q q
(q—Z(i—i-l); q_2>j
hii(t,0).
(q_2; q_2)j +]( )

Corollary 2.8 Let h;(t,0) and h;(t,0) be two g-symmetric polynomials at
zero. Then

3 The differential transformation technique on
g-symmetric calculus

Based on earlier research [12,13], the basic definitions and operations of
differential transformation method are extended. The definition of the Taylor
series on a time scale can be found in [17].
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Definition 3.1 A real-valued function f defined on T is said to be q-symmetric
analytic at ty if and only if there is a power series centered at ty that converges
to f near to, i.e. there exists coefficients {ay} and points c,d € T. such that
c<ty<dand f(t) = ;L,arhi(t, to) fort € (c,d)\T. Ifx(t) is g-symmetric
analytic in the time domain ¢N, then x(t) is continuously differentiable with
respect to t.

Definition 3.2 Let the K domain be the set of nonnegative integers. The
spectrum of x(t) at t; in the K domain is written as

dsx(t)
dt

Definition 3.3 If z(t) can be expressed by the Taylor series on , then the
differential transformation of X (k) is represented as

ZX Ve (t, 1), (4)

X(k) = [%——l=1,,Vk € K. (3)

where hy(t,t;), k € N are g-symmetric polynomials with degree k and X (t) is
the spectrum of z(t) at t = t;.

Applying the differential transformation method in Definition 3.3, the so-
lution of the nonlinear g-symmetric difference equation (1) can be represented
as

ZX V(¢ 0), (5)

where X (k) is the spectrum of z(t) at 0. The products of z(t)d,(t) and z(t)
in (1) are expressed as follows:

—i) X (i+1)hg—i(t,0)h i D X (k=) X (i+1)H (k—i, i) h(t,0),

k=0 i=0 k=0 =0
(6)

k
() =Y [ X (k=) X (@) H(k —i,)]hy(t,0), (7)
where H(i,]) = % H(i,0) = H(0,5) = 1,i,j = 0,1,2,-- - . Substi-
tuting (5),(6) and (7) into the nonlinear equation (1), it can be transformed
into an algebraic equation as

(1) dgr(t)

!
Ja
??‘

00 k
S IX(k+2)+29X(k+1) +e1 > X(k—i)X(i+1)H(k— 1)
k=0 i=0

+OPX (k) + Y X (k — )X (i) H (k — i,1)]h(t,0) = 0.

=0
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which yields the following algebraic equation

k

k
X (k+2)+2yX (k+1)+em Y X (k—i) X (i+1)H (k—i,i)+Q°X (k)+ Y _ X (k—i)X (i) H (k—i,i) = 0,

i=0 1=0

~ (8)
where k£ = 0,1,2,3,---. As X(0) = @ and d,z(0) = b, the initial estimate of
the series solution can be given as x(t) = a + bh;(t,0), i.e. the first two terms
in the algebraic equation are X (0) = a and X (1) = b. Hence, the spectrum
X (k) of z(t) at 0 satisfies the algebraic equation (8) with initial conditions
X(0) = a and X (1) = b, where the solution can be obtained iteratively from
X(0) =aand X(1) =b.

4 Numerical method

To display the accuracy of the differential transformation method, a nu-
merical method for the ¢-symmetric difference equation is developed. Since
0 is a cluster point of ¢V, the derivative of z(t) at 0 is defined as dyz(0) =
lim,, o0 w, if ¢ < 1. Let nyg be a nonnegative integer. To obtain an
approximation for the g-symmetric derivative of z(¢) at t = 0, we use z(¢™) =

2(0) + g dyz(0) + ngo 67236(0) + .-+ . Rearrangement leads to

; olg™) —2(0) _q"

d,z(0) = T 7&21’(0)
= #(g™) —2(0) +O(g™).
qno

where the dominate term in the truncation error is O(¢q™). As d,z(0) = b, that
is to say 2O " which yields 2(¢™) = #(0) + ¢"°b = a + ¢"b. Set ty = 0

q"o .
and t; = ¢™, Let t; = ¢ =Y where i = 2,---,ng + 1. For convenience,
we let t; = 0, where ¢ = —1,—2,--- . Then the interval [0, 1] is partitioned
into ng subintervals. Now x; = x(¢;),7 = 0,1,2,--- ,ng + 1. The g-symmetric

derivative of z(t) at t; can be calculated as

CZ]SCi = Tt T Tint = Dixit1 — Dimi_y, (9)
liv1 —ti1
and _ _
=5 d ZT; —d Ti—
dzl'z = 1 1 1 ! = Ail'i+2 — BZZL'Z + Cixi_g (10)
tiv1 —ti1
where
A — 1 B — liva — ti—2

(tive — t;)(tix1 — tiz1)’ (tize — ti)(tiza — t;)(tix1 — tiz)’
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¢ = 1 D= —
(ti = tico)(ti1 — tic1)

Substituting (10) and (11) into (1) yields the following equation

tiv1 — tic1

AZ’LL’H_Q + (Qz — BZ)LL’Z + 27Dixi+1 + E’YlDiLL’Z'LL’Z'+1 — DiSL’Z’_1 + CZ'SL’Z'_Q + SL’? =0.
This implies that

1
Tiyo = —z[(Qz—Bi)xi—l—QvDixiH +ev1 Dixiwipy — Diwsy +Cimi_o+a2]. (11)

5 Numerical results

The theoretical considerations introduced in the previous sections will be
illustrated with some examples, where the approximate solutions are compared
with numerical solutions.

The time scale g%+ is given as {0.9"|n € Z, } |J{0} = 1,0.9,0.81,0.729, - - - , 0,
where 0 is the cluster point of ¢%+. The maximum error and the average error
are defined as

maximum error = max{|Z,(t) — £(t)||t € ¢%+,t > 0.9},
and

average error = sum{\in(t)—fc(tl)\o\(t)eqz+ 7t20.9100}7
respectively, where T, (t) is the approximate solution with n iterations and z(t)
is the numerical solution obtained by (12).

The under-damped cases are considered with (i) 2y =0,y = 0.1, e = 1
and Q =1; (ii) 2y = 0.1,y = 0.1, e = 1 and Q = 1; (di7) 2y = 2.5, 71 = 0.1,
e =1 and Q = 1. In order to satisfy the initial conditions, z(0) = 1 and

0%3:(0) = 0.5, the initial approximation can be given zo = 1 + 0.5¢. By the
recurrence relation(7), the first 4 components of x,(t) are obtained. In the
same manner, the rest of components of the iteration formula were obtained
using the symbolic toolbox in Mathematics package. For the numerical com-
putations, the interval [0, 1] is partitioned into 101 subintervals, i.e. ng = 100.
For case (7)

21 = 1+40.5hy(
2y = 1+40.5hy(
x5 = 1+ 0.5hy(
24 = 1+40.5hy(

Y )

0)
,0) — 2.05hy(t, 0),

,0) — 2.05hy(t, 0) — 1.32h4(t, 0),

0) — 2.05hs(t, 0) — 1.32h5(t, 0) + 5.988h4(t, 0).

~ T+ T~ T

Y

and so on.
For case (1)
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1 = 14050t
20 = 14050t
(t
(t

)

— 2.10hs(t,0),
— 2.10hy(t,0) — 1.11hs(t, 0),
— 2.10hs(t,0) — 1.11h3(t, 0) + 6.099A4(¢, 0).

Trs = 1+05h1
Ty = 1—|—05h1

Y

o o o O
~— ~— ~— ~—

Y

and so on.
For case (ii)

21 = 1+0.5hy(
xo = 14 0.5h(
(
(

Y )

— 4.30hs(t,0),
— 4.30hy(t, 0) + 9.43h4(t, 0),
— 4.30hy(t, 0) + 9.43h3(t, 0) — 17.587hy(t,0).

I3 = 1+05h1
Ty = 1+05h1

Y

£,0)
£,0)
£,0)
£,0)

and so on.

Using the calculator, we get the corresponding values of the approximate
solution 7, (t) at each point of ¢+, while the values of the numerical solution
Z(t) can be easily seen from the Figures.1-3 generated by Mathematica 9.0.
Besides, we calculate the maximum errors shown in the following table, which
indicates the accuracy.

Table 1

The comparison table of each case.

Time domain | .109 | .205 | .313 | .430 | .531 | .656 | .729 .81
case 1 .0007 | .0023 | .0085 | .0125 | .0150 | .0156 | .0032 | .0138
case 2 .0007 | .0023 | .0083 | .0118 | .0148 | .0142 | .0029 | .0156
case 3 .0008 | .0011 | .0101 | .0115 | .0142 | .0287 | .0103 | .0147

.0308
.0312
.0186

6 Conclusions

In this study, a product rule of two generalized polynomials on ¢%+ is de-
rived, which overcomes the difficulty of developing a theory of series solutions
of g-symmetric difference equation. In future studies, the use of differential
transformation method will be extended to other nonlinear ¢-symmetric dif-
ference equations.
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