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Abstract

In this paper, we first induce the recursive formula of q-symmetric

polynomials and prove the product rule of two q-symmetric polynomials

at 0.Then differential transformation method can be applied to find

approximate solution of nonlinear q-symmetric difference equation. Last

but not least, the approximate solutions are also contrasted with the

numerical solutions to verify their accuracy.
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1 Introduction

Differential transformation method based on the Taylor series expansion
is a semi-numerical-analytic method for solving nonlinear ordinary differential
problems. It was first proposed by Zhou [1] in 1986 for the solution of linear
and nonlinear initial value problems that appear in electrical circuits. Besides,
it has been used to obtain numerical and analytical solutions of various equa-
tions [2-10]. Recently, there are many studies on the applications of it to the
damped systems in literature. For instance, Jang and Chen [11] employed
it to investigate the response of a strongly nonlinear damped system. Kuo
and Lo [12] applied it to analyze the response of a damped system with high
nonlinearity. Moreover, Hsuan-Ku Liu [13] extended the use of differential
transformation method to the case of strongly nonlinear damped q-difference
equations.
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With the development of q-analysis, q-symmetric analysis motivates the
interests of many scientists. Actually, Artur M.C. Brito da Cruz [14] has in-
troduced a wealth of knowledge about q-symmetric variational calculus, which
laid a good foundation to the continue study. On the other hand, q-symmetric
quantum calculus does play an important role in various areas, such as con-
formal quantum mechanics [15] and so on. As noticed in [15], the q-symmetric
derivative let the q-exponential function have unique properties. We believe
that the q-symmetric derivative has, in general, better properties than the
h-derivative f(t+h)−f(t)

h
and the q-derivative f(qt)−f(t)

(q−1)t
. However, to the best of

our knowledge, there are no papers concerned with the theory of approximate
solutions for nonlinear q-symmetric difference equations.

This dissertation aims to extend the differential transformation method to
the nonlinear damped q-symmetric difference equation, which defined on

qN = {qn|n ∈ N}
⋃

{0}

for q ∈ [0, 1]. To put it precisely, the strongly nonlinear damped q-symmetric
difference equation is described as

d̃2qx+ (2γ + ǫγ1x)d̃qx+ Ω2x+ x2 = 0. (1)

with x(0) = a, d̃qx(0) = b. Where, γ and γ1 represent linear damping parame-
ters, ǫ is nonlinear parameter, Ω is the frequency of underdamped motion.

For convenience, we assume that
∑j

n=i An = 0 and
∏j

n=i An = 1 for this.

2 q-symmetric polynomials

It is known that Hilger [16] proposed the calculus of time scales to make a
connection between discrete and continuous analysis. However, as to the same
problem, different derivatives result in different effects on literature. This
section will study q-symmetric polynomials on the time scale qN for q ∈ [0, 1]
on which q-symmetric derivative is defined.

Let q ∈ [0, 1] and let I be an interval (bounded or unbounded) of R con-
taining 0. We will denote by Iq the set

Iq := qI := {qx : x ∈ I}.

Note that
Iq ⊂ I.

Definition 2.1 ([19]) Let f be a real function defined on qN. The q-symmetric
difference operator of f is defined by

d̃q[f ](t) =
f(qt)− f(q−1t)

(q − q−1)t
,
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if t ∈ qN \ {0}, and d̃q[f ](0) := f ′(0), provided f is differentiable at 0. We

usually call d̃q[f ] the q-symmetric derivative of f.

Definition 2.2 ([17]) On a time scale T, the generalized polynomials hk(·, t0) :
T → R are defined recursively as follows:

h0(t, s) = 1, hk+1 =

∫ t

s

hk(τ, s)d̃qτ,

where

k = 0, 1, 2, · · · .

Definition 2.3 ([15]) Assume that f : qN → R is a function. The function
F which is pre-differentiable in qN such that

d̃qF (t) = f(t), ∀t ∈ qN

is called a pre-antiderivative of f.
We define the indefinite integral of the function f by

∫
f(t)d̃qt = F (t) + C,

where C is an arbitrary constant. Moreover, the definite integral is defined as

∫ b

a

f(t)d̃qt =

∫ b

0

f(t)d̃qt−

∫ a

0

f(t)d̃qt,

Let a, b ∈ I and a < b. For f : qN −→ R and for q ∈]0, 1[ the q-symmetric
integral of f from a to b is given by

∫ b

a

f(t)d̃qt = F (b)− F (a), ∀a, b ∈ qN.

Lemma 2.4 If tn has q-symmetric derivative on qN, then

∫
tnd̃qt =

tn+1

An

+ C,

Where

An =
n∑

j=0

qn−jq−j, n = 0, 1, 2, · · · .

and C is an arbitrary constant.
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Proof. Let F (t) = tn+1

An
+C, it is obviously that F (t) is q-symmetric differ-

entiable. Then, we obtain

d̃qF (t) =

(qt)n+1

An
+ C − (q−1t)n+1

An
− C

qt− q−1t

=
(qt)n+1 − (q−1t)n+1

An(qt− q−1t)

= tn. �

For convenience, we assume
∑j

n=iAn = 0 and
∏j

n=iAn = 1 for i > j.

Theorem 2.5 On the time scale qN, Based on the above knowledge, after
computing the recurrence relation, the q-symmetric polynomials are described
as

hk(t, s) =
tk − sk
∏k−1

n=0An

−
s(tk−1 − sk−1)

∏k−2
n=0An

−
k−1∑

i=2

Bi−1
si(tk−i − sk−i)
∏k−i−1

n=0 An

, k = 0, 1, 2, · · · ,

(2)
where

An =
n∑

j=0

qn−jq−j, n = 0, 1, 2, · · · ,

B1 =
1

q + q−1
− 1,

Bi−1 =
1

∏i−1
n=0An

−
1

∏i−2
n=0An

−
B1∏i−3
n=0An

−· · ·−
Bi−3∏1
n=0An

−Bi−2. i = 3, 4, 5, · · · .

on qN.

Proof. Clearly, according to the definition 2.2 and lemma 2.1, we have

h1(t, s) = t− s,

d̃qh1(t, s) =
qt− s− q−1t+ s

(q − q−1)t
= 1 = h0(t, s),

h2(t, s) =
t2 − s2

A1
−

s(t− s)

A0
=

t2 − s2

q + q−1
− s(t− s),

d̃qh2(t, s) =
1

(q − q−1)t

(
(qt)2 − s2

q + q−1
− s(qt− s)−

(q−1t)2 − s2

q + q−1
+ s(q−1t− s)

)
= h1(t, s).
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Next, we assume (2) holds when k = m,m ∈ N, then

d̃qhm+1(t, s) =
1

(q − q−1)t

(
hm+1(qt, s)− hm+1(q

−1t, s)

)

=
1

(q − q−1)t

(
(qt)m+1 − sm+1

∏m

n=0An

−
s((qt)m − sm)
∏m−1

n=0 An

−

m∑

i=2

Bi−1
si((qt)m+1−i − sm+1−i)

∏k−i−1
n=0 An

−
(q−1t)m+1 − sm+1

∏m

n=0An

+
s((q−1t)m − sm)

∏m−1
n=0 An

+
m∑

i=2

Bi−1
si((q−1t)m+1−i − sm+1−i)

∏m−i

n=0 An

)

=
1

(q − q−1)t

(
(qm+1 − (q−1)m+1)tm+1

∏m
n=0An

−
s((qt)m − (q−1t)m)

∏m−1
n=0 An

−

m∑

i=2

Bi−1
si((qt)m−i+1 − (q−1t)m−i+1)

∏m−i
n=0 An

)

=
tm

∏m−1
n=0 An

−
stm−1

∏m−2
n=0 An

−
m∑

i=2

Bi−1
si((qt)m−i+1 − (q−1t)m−i+1)

∏m−i

n=0 An(q − q−1)t

=
tm

∏m−1
n=0 An

−
stm−1

∏m−2
n=0 An

−

m∑

i=2

Bi−1
sitm−i

∏m−i−1
n=0 An

=
tm

∏m−1
n=0 An

−
stm−1

∏m−2
n=0 An

−
m−1∑

i=2

Bi−1
sitm−i

∏m−i−1
n=0 An

− Bm−1s
m

=
tm

∏m−1
n=0 An

−
stm−1

∏m−2
n=0 An

−
m−1∑

i=2

Bi−1
sitm−i

∏m−i−1
n=0 An

−
sm

∏m−1
n=0 An

+
sm

∏m−2
n=0 An

+
B1s

m

∏m−3
n=0 An

+
B2s

m

∏m−4
n=0 An

+ · · ·+ smBm−2

=
tm − sm
∏m−1

n=0 An

−
s(tm−1 − sm−1)

∏m−2
n=0 An

− B1
s2(tm−2 − sm−2)

∏m−3
n=0 An

−B2
s3(tm−3 − sm−3)

∏m−4
n=0 An

− · · · − Bm−2s
m−1t + smBm−2

=
tm − sm
∏m−1

n=0 An

−
s(tm−1 − sm−1)

∏m−2
n=0 An

−

m−1∑

i=2

Bi−1
si(tm−i − sm−i)
∏m−i−1

n=0 An

= hm(t, s). �

Agarwal and Bohner [18] gave the Taylor formula for functions on a general
time scale. On qN the Taylor formula is written as

Theorem 2.6 Let n ∈ N. Suppose f is n times continuously differentiable
on qN. Let α, t ∈ qN. Then the Taylor formula of f near x = α is given by

f(t) =
∑n−1

k=0 hk(t, α)d̃q
k
f(α)+

∫ ρn−1(t)

α
hn−1(t, σ(τ))d̃q

n
f(τ)d̃qτ.
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To develop an approximate solution of (1), the product rule of two q-polynomials
at 0 is derived.

Lemma 2.7 Let hi(t, 0) and hj(t, 0) be two q-symmetric polynomials at
zero. Then the product rule of two q-symmetric polynomials is

hi(t, 0)hj(t, 0) =
(q−2(i+1); q−2)j
(q−2; q−2)j

hi+j(t, 0),

where

(q−2(i+1); q−2)j =

j−1∏

n=0

qn+i(1− q−2(i+1)q−2n).

Proof. By

hi+j(t, 0) =
ti+j

∏i+j−1
n=0 An

=
ti

∏i−1
n=0An

tj
∏j−1

n=0An

∏j−1
n=0An∏i+j−1

n=i An

,

then we have

hi(t, 0)hj(t, 0) =

∏i+j−1
n=i An∏j−1
n=0An

hi+j(t, 0)

=

∏i+j−1
n=i

∑n
u=0 q

n−uq−u

∏j−1
n=0

∑n

u=0 q
n−uq−u

hi+j(t, 0)

=

j−1∏

n=0

∑n+i

u=0 q
n−u+iq−u

∑n

u=0 q
n−uq−u

hi+j(t, 0)

=

j−1∏

n=0

qn+i − q−(n+i+2)

qn − q−(n+2)
hi+j(t, 0)

=
(q−2(i+1); q−2)j
(q−2; q−2)j

hi+j(t, 0). �

Corollary 2.8 Let hi(t, 0) and hj(t, 0) be two q-symmetric polynomials at
zero. Then

hi(t, 0)hj(t, 0) = hj(t, 0)hi(t, 0).

3 The differential transformation technique on

q-symmetric calculus

Based on earlier research [12,13], the basic definitions and operations of
differential transformation method are extended. The definition of the Taylor
series on a time scale can be found in [17].
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Definition 3.1 A real-valued function f defined on T is said to be q-symmetric
analytic at t0 if and only if there is a power series centered at t0 that converges
to f near t0, i.e. there exists coefficients {ak} and points c, d ∈ T. such that
c < t0 < d and f(t) =

∑n1

k=0 akhk(t, t0) for t ∈ (c, d)
⋂
T. If x(t) is q-symmetric

analytic in the time domain qN, then x(t) is continuously differentiable with
respect to t.

Definition 3.2 Let the K domain be the set of nonnegative integers. The
spectrum of x(t) at ti in the K domain is written as

X(k) = [
d̃kqx(t)

d̃qtk
]t=ti , ∀k ∈ K. (3)

Definition 3.3 If x(t) can be expressed by the Taylor series on , then the
differential transformation of X(k) is represented as

x(t) =

∞∑

k=0

X(k)hk(t, ti), (4)

where hk(t, ti), k ∈ N are q-symmetric polynomials with degree k and X(t) is
the spectrum of x(t) at t = ti.

Applying the differential transformation method in Definition 3.3, the so-
lution of the nonlinear q-symmetric difference equation (1) can be represented
as

x(t) =

∞∑

k=0

X(k)hk(t, 0), (5)

where X(k) is the spectrum of x(t) at 0. The products of x(t)d̃q(t) and x(t)
in (1) are expressed as follows:

x(t)d̃qx(t) =
∞∑

k=0

k∑

i=0

X(k−i)X(i+1)hk−i(t, 0)hi(t, 0) =
∞∑

k=0

[
k∑

i=0

X(k−i)X(i+1)H(k−i, i)]hk(t, 0),

(6)

x2(t) =

∞∑

k=0

[

k∑

i=0

X(k − i)X(i)H(k − i, i)]hk(t, 0), (7)

where H(i, j) =
(q−2(i+1);q−2)j

(q−2;q−2)j
, H(i, 0) = H(0, j) = 1, i, j = 0, 1, 2, · · · . Substi-

tuting (5),(6) and (7) into the nonlinear equation (1), it can be transformed
into an algebraic equation as

∞∑

k=0

[X(k + 2) + 2γX(k + 1) + εγ1

k∑

i=0

X(k − i)X(i+ 1)H(k − i, i)

+Ω2X(k) +
k∑

i=0

X(k − i)X(i)H(k − i, i)]hk(t, 0) = 0.
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which yields the following algebraic equation

X(k+2)+2γX(k+1)+εγ1

k∑

i=0

X(k−i)X(i+1)H(k−i, i)+Ω2X(k)+

k∑

i=0

X(k−i)X(i)H(k−i, i) = 0,

(8)

where k = 0, 1, 2, 3, · · · . As X(0) = a and d̃qx(0) = b, the initial estimate of
the series solution can be given as x(t) = a+ bhi(t, 0), i.e. the first two terms
in the algebraic equation are X(0) = a and X(1) = b. Hence, the spectrum
X(k) of x(t) at 0 satisfies the algebraic equation (8) with initial conditions
X(0) = a and X(1) = b, where the solution can be obtained iteratively from
X(0) = a and X(1) = b.

4 Numerical method

To display the accuracy of the differential transformation method, a nu-
merical method for the q-symmetric difference equation is developed. Since
0 is a cluster point of qN, the derivative of x(t) at 0 is defined as d̃qx(0) =

limn→∞
x(qn)−x(0)

qn
, if q < 1. Let n0 be a nonnegative integer. To obtain an

approximation for the q-symmetric derivative of x(t) at t = 0, we use x(qn0) =

x(0) + qn0 d̃qx(0) +
q2n0

2
d̃2qx(0) + · · · . Rearrangement leads to

d̃qx(0) ≈
x(qn0)− x(0)

qn0
−

qn0

2
d̃2qx(0)

=
x(qn0)− x(0)

qn0
+O(qn0).

where the dominate term in the truncation error is O(qn0). As d̃qx(0) = b, that

is to say x(qn0 )−x(0)
qn0

, which yields x(qn0) = x(0) + qn0b = a + qn0b. Set t0 = 0

and t1 = qn0, Let ti = qn0−(i−1), where i = 2, · · · , n0 + 1. For convenience,
we let ti = 0, where i = −1,−2, · · · . Then the interval [0, 1] is partitioned
into n0 subintervals. Now xi = x(ti), i = 0, 1, 2, · · · , n0 + 1. The q-symmetric
derivative of x(t) at ti can be calculated as

d̃qxi =
xi+1 − xi−1

ti+1 − ti−1

= Dixi+1 −Dixi−1, (9)

and

d̃2qxi =
d̃qxi+1 − d̃qxi−1

ti+1 − ti−1

= Aixi+2 − Bixi + Cixi−2 (10)

where

Ai =
1

(ti+2 − ti)(ti+1 − ti−1)
, Bi =

ti+2 − ti−2

(ti+2 − ti)(ti+2 − ti)(ti+1 − ti−1)
,



q-symmetric difference equation 511

Ci =
1

(ti − ti−2)(ti+1 − ti−1)
, Di =

1

ti+1 − ti−1
.

Substituting (10) and (11) into (1) yields the following equation

Aixi+2 + (Ω2 − Bi)xi + 2γDixi+1 + εγ1Dixixi+1 −Dixi−1 + Cixi−2 + x2
i = 0.

This implies that

xi+2 = −
1

Ai

[(Ω2−Bi)xi+2γDixi+1+εγ1Dixixi+1−Dixi−1+Cixi−2+x2
i ]. (11)

5 Numerical results

The theoretical considerations introduced in the previous sections will be
illustrated with some examples, where the approximate solutions are compared
with numerical solutions.

The time scale qZ+ is given as {0.9n|n ∈ Z+}
⋃
{0} = 1, 0.9, 0.81, 0.729, · · · , 0,

where 0 is the cluster point of qZ+ . The maximum error and the average error
are defined as

maximum error = max{|xn(t)− x̂(t)||t ∈ qZ+ , t ≥ 0.9100},
and

average error = sum{|xn(t)−x̂(t)||t∈qZ+ ,t≥0.9100}
100

,

respectively, where xn(t) is the approximate solution with n iterations and x̂(t)
is the numerical solution obtained by (12).

The under-damped cases are considered with (i) 2γ = 0, γ1 = 0.1, ε = 1
and Ω = 1; (ii) 2γ = 0.1, γ1 = 0.1, ε = 1 and Ω = 1; (iii) 2γ = 2.5, γ1 = 0.1,
ε = 1 and Ω = 1. In order to satisfy the initial conditions, x(0) = 1 and

d̃qx(0) = 0.5, the initial approximation can be given x0 = 1 + 0.5t. By the
recurrence relation(7), the first 4 components of xn(t) are obtained. In the
same manner, the rest of components of the iteration formula were obtained
using the symbolic toolbox in Mathematics package. For the numerical com-
putations, the interval [0, 1] is partitioned into 101 subintervals, i.e. n0 = 100.
For case (i)

x1 = 1 + 0.5h1(t, 0),

x2 = 1 + 0.5h1(t, 0)− 2.05h2(t, 0),

x3 = 1 + 0.5h1(t, 0)− 2.05h2(t, 0)− 1.32h3(t, 0),

x4 = 1 + 0.5h1(t, 0)− 2.05h2(t, 0)− 1.32h3(t, 0) + 5.988h4(t, 0).

and so on.
For case (ii)



512 Li Wang and Chengmin Hou

x1 = 1 + 0.5h1(t, 0),

x2 = 1 + 0.5h1(t, 0)− 2.10h2(t, 0),

x3 = 1 + 0.5h1(t, 0)− 2.10h2(t, 0)− 1.11h3(t, 0),

x4 = 1 + 0.5h1(t, 0)− 2.10h2(t, 0)− 1.11h3(t, 0) + 6.099h4(t, 0).

and so on.

For case (iii)

x1 = 1 + 0.5h1(t, 0),

x2 = 1 + 0.5h1(t, 0)− 4.30h2(t, 0),

x3 = 1 + 0.5h1(t, 0)− 4.30h2(t, 0) + 9.43h3(t, 0),

x4 = 1 + 0.5h1(t, 0)− 4.30h2(t, 0) + 9.43h3(t, 0)− 17.587h4(t, 0).

and so on.

Using the calculator, we get the corresponding values of the approximate
solution xn(t) at each point of qZ+ , while the values of the numerical solution
x̂(t) can be easily seen from the Figures.1-3 generated by Mathematica 9.0.
Besides, we calculate the maximum errors shown in the following table, which
indicates the accuracy.

Table 1

The comparison table of each case.

Time domain .109 .205 .313 .430 .531 .656 .729 .81 .9
case 1 .0007 .0023 .0085 .0125 .0150 .0156 .0032 .0138 .0308
case 2 .0007 .0023 .0083 .0118 .0148 .0142 .0029 .0156 .0312
case 3 .0008 .0011 .0101 .0115 .0142 .0287 .0103 .0147 .0186

6 Conclusions

In this study, a product rule of two generalized polynomials on qZ+ is de-
rived, which overcomes the difficulty of developing a theory of series solutions
of q-symmetric difference equation. In future studies, the use of differential
transformation method will be extended to other nonlinear q-symmetric dif-
ference equations.
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