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1 Introduction

Inequalities play a significant role in almost all fields of mathematics and se-
veral applications of them can be found in various areas of sciences such as,
physical and engineering sciences, [1].

Many inequalities have been established for convex functions and one of
most famous is the Hermite-Hadamard inequality, due to its rich geometrical
significance and applications (see [5], [14]). For some of these inequalities,
several authors have estimated the error in the approximation of its sides.
The technique used consider derivatives of different orders and properties as
convexity and quasi-convexity. In 1998, Dragomir and Agarwal [4], obtained
inequalities for differentiable convex functions which are connected with the
right-hand side of Hermite-Hadamard’s (trapezoid) inequality. Then, in 2000,
Pearce and Pečarić [13], presented an improvement to some error estimates
of Dragomir and Agarwal, based on convexity, for the trapezoidal formula.
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Corresponding estimates were established for the left-hand side of Hermite-
Hadamard (midpoint) inequality. A parallel development was made based on
concavity. This is a generalization of Dragomir and Agarwal’s work. In the
same way, as Dragomir and Agarwal approaches [4], inequalities for differen-
tiable convex mapping which are connected with the left-hand side of Hermite-
Hadamard (midpoint) inequality was proved by Kirmaci in 2004, (see [7]). In
his work, some inequalities are presented in Kirmaci’s work for differentiable
convex functions, using Hermite-Hadamard’s integral inequality holding for
convex functions. Also, some applications to special means of real numbers
were given and some error estimates for the midpoint formula were obtained.
In the same year, D. A. Ion [6], established some estimates of the right-hand
side of a Hermite-Hadamard type inequality in which some quasi-convex func-
tions are involved. He also pointed out some applications to give estimates
for the approximation error of the integral of a function f(x) on [a, b] in the
trapezoidal formula and extend the initial results to functions of several vari-
ables. Later, in 2010, Sarakaya et al. [15] established several inequalities for
twice differentiable mappings that are connected with the celebrated Hermite-
Hadamard integral inequality. Specifically, considering functions whose sec-
ond derivatives in absolute values are convex and quasi-convex, he obtained
inequalities related to the left-side of Hermite-Hadamard inequality. In the
same year, Alomari et al. [2] obtained new refined inequalities of the right-
hand side of Hermite-Hadamard type for functions whose second derivatives
in absolute values are quasi-convex. For its part, Alomari in 2008, [1], in his
PhD thesis provided a study of some famous and fundamental inequalities,
particularly the Hermite-Hadamard via three types odd convex functions.

In 1980, K. Nikodem [11] established a research line about convex stochastic
processes. Later, D. Kotrys in 2011 presented in [8] an inequality of Hermite-
Hadamard type for Jensen-convex stochastic processes and N. Merentes et al.,
proved in [3] a generalization for h-convex stochastic processes. In particular,
with the function h equals to the identity, a Hermite-Hadamard inequality
type for convex stochastic processes were obtained in [3].

The aim of this paper is establish a counterpart of the results for convex
functions of Dragomir and Agarwal [4], Pearce and Peǎrić [13], Kirmaci [7], Ion
[6], Sarakaya [15] and Alomari [1], [2], to convex functions for convex stochastic
processes with convex and quasi-convex derivatives in absolute value, in order
to estimate the error in the sides of the Hermite-Hadamard inequality type for
convex stochastic processes proved in [3].

2 Preliminary Notes

Let (Ω,A,P) be a probability space. A function X : Ω → R is a random

variable if it is A−measurable. A function X : I × Ω → R, where I ⊆ R is
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an interval, is a stochastic process if for every t ∈ I the function X(t, ·) is a
random variable.

A stochastic process X : I × Ω → R is

1. Jensen-convex if, for every a, b ∈ I, the following inequality is: satisfied:

X

(

a+ b

2
, ·
)

≤ X(a, ·) +X(b, ·)
2

, (a.e). (1)

2. convex if, for every a, b ∈ I, t ∈ (0, 1), the following inequality is tales
place:

X(ta+ (1− t)b, ·) ≤ tX(a, ·) + (1− t)X(b, ·), (a.e). (2)

3. quasi-convex if, for every a, b ∈ I, t ∈ (0, 1), the following inequality is
satisfied:

X(ta+ (1− t)b, ·) ≤ max{X(a, ·), X(b, ·)}, (a.e). (3)

Also, we say that a stochastic process X : I × Ω → R is:

1. continuous in probability in the interval I, if for all t0 ∈ I we have

P − lim
t→t0

X(t, ·) = X(t0, ·),

where P − lim denotes the limit in probability.

2. mean-square continuous in I, if for all t0 ∈ I

lim
t→t0

E[(X(t, ·)−X(t0, ·))2] = 0,

where E[X(t, ·)] denotes the expectation value of the random variable
X(t, ·).

3. differentiable at a point t ∈ I if there is a random variable
X ′(t, ·) : I × Ω → R:

X ′(t, ·) = P − lim
t→t0

X(t, ·)−X(t0, ·)
t− t0

.

Note that mean-square continuity implies continuity in probability, but the
converse is not true.

Fixed X : I ×Ω → R a stochastic process with E[X(t)2] < ∞ for all t ∈ I,
[a, b] ⊆ I, a = t0 < t1 < ... < tn = b a partition of [a, b] and Θk ∈ [tk−1, tk]
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for all k = 1, ..., n, a random variable Y : Ω → R is called the mean-square

integral of the process X on [a, b], if for a normal sequence of partitions of the
interval [a, b] and for all Θk ∈ [tk−1, tk], k = 1, ..., n we have

lim
n→∞

E





(

n
∑

k=1

X(Θk, ·)(tk − tk−1)− Y (·)
)2


 = 0.

In such case, we write

Y (·) =
∫ b

a
X(s, ·)ds (a.e).

For the existence of the mean-square integral is enought to assume the
mean-square continuity of the stochastic process X . Basic properties of the
mean-square integral can be read in [18].

In [8], Hermite-Hadamard inequality for Jensen-convex stochastic process
was proved. This result was extended for h-convex stochastic processes in [3]
as follows:

Theorem 2.1 Let h : (0, 1) → R be a non-negative function, h 6≡ 0 and

X : I × Ω → R a non negative, h−convex, mean square integrable stochastic

process. For every a, b ∈ I, (a < b), the following inequality is satisfied almost

everywhere:

1

2h
(

1
2

)X

(

a+ b

2
, ·
)

≤ 1

(b− a)

∫ b

a
X(t, ·)dt ≤ (X(a, ·) +X(b, ·))

∫ 1

0
h(z)dz.

(4)

As a corollary, the following inequality of Hermite-Hadamard type for con-
vex stochastic processes holds almost everywhere for a, b ∈ I, with a < b:

X

(

a + b

2
, ·
)

≤ 1

(b− a)

∫ b

a
X(u, ·)du ≤ X(a, ·) +X(b, ·)

2
, (a.e.). (5)

In [4], Dragomir and Agarwal proved that if f : I ⊂ R → R is a differen-
tiable mapping on I◦, where a, b ∈ I, a < b with |f ′| convex on [a, b], then the
forecoming inequality is true:

∣

∣

∣

∣

∣

f(a) + f(b)

2
− 1

(b− a)

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

≤ (b− a)

8
{|f ′(a)|+ |f ′(b)|} . (6)

In [13], Pearce and Pečarić generalized the previous results. They proved:
If f : I ⊂ R → R a differentiable mapping on I◦, where a, b ∈ I, a < b with
|f ′|q is convex on [a, b], for some q > 1, the following inequality are valued:
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∣

∣

∣

∣

∣

f(a) + f(b)

2
− 1

(b− a)

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

≤ (b− a)

4

{

|f ′(a)|q + |f ′(b)|q
2

}1/q

. (7)

∣

∣

∣

∣

∣

f

(

a+ b

2

)

− 1

(b− a)

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

≤ (b− a)

4

{

|f ′(a)|q + |f ′(b)|q
2

}1/q

. (8)

D. A. Ion [6], obtained two inequalities of the right-hand side of Hermite-
Hadamard’s type for functions whose derivative in absolute values are quasi-
convex functions, i.e., if |f ′| is quasi-convex on [a, b], then the following in-
equality holds:

∣

∣

∣

∣

∣

f(a) + f(b)

2
− 1

(b− a)

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

≤ (b− a)

4
max{|f ′(a)|, |f ′(b)|}. (9)

Moreover, if |f ′|q is quasi-convex on [a, b] with p > 1, then the following
inequality takes place:

∣

∣

∣

∣

∣

f(a) + f(b)

2
− 1

(b− a)

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

≤ (b− a)

2(p+ 1)1/p
max{|f ′(a)|q, |f ′(b)|q}1/q,

(10)
where q = p/(p− 1).

Note that the previous results are connected with the right-hand side if
Hermite-Hadamard inequality. In order to estimate the error in the left-hand
side U. S. Kirmaci showed that, if |f ′| is convex on [a, b], then:

∣

∣

∣

∣

∣

1

(b− a)

∫ b

a
f(x)dx− f

(

a+ b

2

)∣

∣

∣

∣

∣

≤ (b− a)

8
{|f ′(a)|+ |f ′(b)|}. (11)

Nevertheless, using functions whose second derivatives absolute values are
convex and quasi-convex, Sarikaya el al. in 2010 [15], obtained inequalities
related to the left side of Hermite-Hadamard inequality. For these results they
consider f : I ⊂ R → R twice differentiable function on I◦ with f ′′ ∈ L1[a, b],
and |f ′′| a convex function on [a,b], then:

∣

∣

∣

∣

∣

1

(b− a)

∫ b

a
f(x)dx− f

(

a+ b

2

)∣

∣

∣

∣

∣

≤ (b− a)2

24

{

|f ′′(a)|+ |f ′′(b)|
2

}

. (12)

Further, if |f ′′|q is convex on [a, b], q > 1, then the following inequality
holds:
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∣

∣

∣

∣

∣

1

(b− a)

∫ b

a
f(x)dx− f

(

a+ b

2

)∣

∣

∣

∣

∣

≤ (b− a)2

8(2p+ 1)1/p

{

|f ′′(a)|q + |f ′′(b)|q
2

}1/q

,

(13)
where q = p/(p− 1).

As well, Sarikaya et al. [15], proved an inequality when |f ′′| is quasi-convex
on [a, b]. This result is as follows:

∣

∣

∣

∣

∣

1

(b− a)

∫ b

a
f(x)dx− f

(

a + b

2

)∣

∣

∣

∣

∣

≤ (b− a)2

24
max{|f ′′(a)|+ |f ′′(b)|}. (14)

Also, if |f ′′|q is quasi-convex on [a, b], q > 1:

∣

∣

∣

∣

∣

1

(b− a)

∫ b

a
f(x)dx− f

(

a+ b

2

)∣

∣

∣

∣

∣

≤ (b− a)2

8(2p+ 1)1/p
max{|f ′′(a)|q, |f ′′(b)|q}1/q,

(15)
where q = p/(p− 1).

An improvement of the above result is showed in [15], its is the following:

∣

∣

∣

∣

∣

1

(b− a)

∫ b

a
f(x)dx− f

(

a+ b

2

)∣

∣

∣

∣

∣

≤ (b− a)2

24
max{|f ′′(a)|q, |f ′′(b)|q}1/q, (16)

where q = p/(p− 1).
In 2010, Alomari et al. [2], established new refined inequalities of the right-

hand side of Hermite-Hadamard result for the class functions whose second
derivatives at certain powers are quasi-convex functions. In this paper, Alomari
et al. showed that if f : I ⊂ R → R twice differentiable mapping on I◦, a, b ∈ I
with a < b, f ′′ is integrable on [a, b] and |f ′′| is a quasi-convex function on [a, b]
then:

∣

∣

∣

∣

∣

f(a) + f(b)

2
− 1

(b− a)

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

≤ (b− a)2

12
max{|f ′′(a)|, |f ′′(b)|}. (17)

However, if |f ′′|q is quasi-convex on [a, b] with p > 1, then the following
inequality holds:

∣

∣

∣

∣

∣

1

(b− a)

∫ b

a
f(x)dx− f

(

a+ b

2

)∣

∣

∣

∣

∣

(18)

≤ (b− a)2

8

(√
π

2

)1/p




Γ(1 + p)

Γ
(

3
2
+ p

)





1/p

max{|f ′′(a)|q, |f ′′(b)|q}1/q,
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where q = p/(p− 1).
Now, we present an equivalent of these results for stochastic processes

whose first and second derivatives at certain powers are convex or quasi-convex.

3 Main Results

In order to prove an inequality for convex differentiable stochastic processes
which are connected with the right-hand side of Hermite-Hadamard’s inequal-
ity, we need to use the following lemma, a counterpart of an equality stated
by Dragomir and Agarwal in [4]. Note that the next result is a Montgomery
equality type [1].

Lemma 3.1 Let X : I × Ω → R be a stochastic process mean-square dif-

ferentiable on I◦, a, b ∈ I with a < b. If X ′(t, ·) is mean-square integrable on

[a, b], then the following equality holds almost everywhere:

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

=
(b− a)

2

∫ 1

0
(1− 2t)X ′(ta+ (1− t)b, ·))dt. (19)

Proof. Let us calculate the integral on the right-hand side by integrating by
parts

∫ 1

0
(1− 2t)X ′(ta + (1− t)b, ·)dt =

1

(b− a)
[X(a, ·) +X(b, ·)]

− 2

(b− a)

∫ 1

0
X(ta + (1− t)b, ·)dt, (a.e).

Multiplying both sides of the integral by (b− a)/2, we have

(b− a)

2

∫ 1

0
(1− 2t)X ′(ta + (1− t)b, ·)dt =

X(a, ·) +X(b, ·)
2

−
∫ 1

0
X(ta+ (t− t)b, ·)dt, (a.e).

Making u = ta+ (1− t)b, in the integral of the right-hand side, we get the
desired result.

The following theorem gives an error estimation for the right-hand side of
the Hermite-Hadamard inequality for convex stochastic processes with convex
first derivative in absolute value. A similar result was proved by Dragomir and
Agarwal in [4] for convex functions.
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Theorem 3.2 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If |X ′(t, ·)| is a convex stochastic

process, then the following inequality takes place almost everywhere:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

≤ (b− a)

8
[|X ′(a, ·)|+ |X ′(b, ·)|] , (a.e).

Proof.

First, we point out that

∫ 1

0
|1− 2t|(1− t)dt =

∫ 1/2

0
(1− 2t)(1− t)dt +

∫ 1

1/2
(2t− 1)(1− t)dt =

1

4
,

∫ 1

0
|1− 2t|tdt =

∫ 1/2

0
(1− 2t)tdt+

∫ 1

1/2
(2t− 1)tdt =

1

4
.

(20)

Next, using the above information and Lemma 3.1 we obtain

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(b− a)

2

∫ 1

0
(1− 2t)X ′(ta + (1− t)b, ·)dt

∣

∣

∣

∣

∣

≤ (b− a)

2

∫ 1

0
|1− 2t||X ′(ta+ (1− t)b, ·)|dt

≤ (b− a)

2

∫ 1

0
|1− 2t| [t|X ′(a, ·)|+ (1− t)|X ′(b, ·)|] dt

=
(b− a)

2

[

|X ′(a, ·)|
∫ 1

0
|1− 2t|tdt

+|X ′(b, ·)|
∫ 1

0
|1− 2t|(1− t)dt

]

=
(b− a)

2

[

1

4
|X ′(a, ·)|+ 1

4
|X ′(b, ·)|

]

=
(b− a)

8
[|X ′(a, ·)|+ |X ′(b, ·)|] , (a.e).

As the approximations established by Kirmaci in [7], inequalities for diffe-
rentiable convex stochastic processes which are connected with the left-hand
side of Hermite-Hadamard inequality are presented bellow, using the following
Montgomery inequality type:
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Lemma 3.3 Let X : I × Ω → R be a stochastic processes mean-square

differentiable on I◦, a, b ∈ I with a < b. If X ′(t, ·) is mean-square integrable

on [a, b], then the following equality holds almost everywhere:

1

(b− a)

∫ b

a
X(u, ·)du−X

(

a + b

2
, ·
)

= (b− a)
∫ 1

0
K(t)X ′(ta+ (1− t)b, ·))dt,

(21)
where

K(t) =















t, t ∈
[

0, 1
2

]

,

t− 1, t ∈
(

1
2
, 1
]

.

(22)

Proof.

Integrating by parts,

∫ 1

0
K(t)X ′(ta+ (1− t)b, ·)dt =

∫ 1/2

0
tX ′(ta + (1− t)b, ·)dt

+
∫ 1

1/2
(t− 1)X ′(ta + (1− t)b, ·)dt

=
1

(a− b)
X

(

a+ b

2
, ·
)

− 1

(a− b)

∫ 1

0
X(ta + (1− t)b, ·)dt, (a.e).

Multiplying both sides of the integral by (b− a), we have

(b− a)
∫ 1

0
K(t)X ′(ta+ (1− t)b, ·)dt

=
∫ 1

0
X(ta+ (1− t)b, ·)dt−X

(

a+ b

2
, ·
)

, (a.e).

By making the change of variable u = ta + (1 − t)b in the integral of the
right-hand side, the desired result shows up.

Theorem 3.4 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If |X ′(t, ·)| is a convex stochastic

process, then the following inequality holds almost everywhere:

∣

∣

∣

∣

∣

X

(

a+ b

2
, ·
)

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

≤ (b− a)

8
[|X ′(a, ·)|+ |X ′(b, ·)|] . (23)
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Proof.

First, we notice that

∫ 1/2

0
t2dt =

1

24
,

∫ 1/2

0
(1− t)2dt =

1

24
,

∫ 1

1/2
t(1− t)dt =

1

12
,

∫ 1/2

0
t(1− t)dt =

1

12
.

From Lemma 3.3 and using the well known Hölder integral inequality:

∣

∣

∣

∣

∣

X

(

a + b

2
, ·
)

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(b− a)
∫ 1

0
K(t)X ′(ta+ (1− t)b, ·))dt

∣

∣

∣

∣

≤ (b− a)
∫ 1

0
|K(t)||X ′(ta+ (1− t)b, ·)|dt

≤ (b− a)

[

∫ 1/2

0
t|X ′(ta + (1− t)b, ·)|dt

+
∫ 1/2

0
(1− t)|X ′(ta + (1− t)b, ·)|dt

]

= (b− a)

[

∫ 1

1/2
t[t|X ′(a, ·)|+ (1− t)|X ′(b, ·)|]dt

+
∫ 1

1/2
(1− t)|[t|X ′(a, ·)|+ (1− t)|X ′(b, ·)|]dt

]

= (b− a)

[

∫ 1/2

0
t2|X ′(a, ·)|dt+

∫ 1/2

0
(1− t)t|X ′(b, ·)|dt

+
∫ 1

1/2
(1− t)t|X ′(a, ·)|dt+

∫ 1

1/2
(1− t)2|X ′(b, ·)|dt

]

= (b− a)
[

1

12
|X ′(a, ·)|+ 1

24
(1− t)t|X ′(b, ·)|

+
1

24
(1− t)t|X ′(a, ·)|+ 1

12
(1− t)2|X ′(b, ·)|

]

=
(b− a)

8
[|X ′(a, ·)|+ |X ′(b, ·)|] , (a.e).

The following result shows that Theorem 3.2 can be presented for stochastic
processes with quasi-convex derivative in absolute valued as the one proved by
Ion [6] for functions.
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Theorem 3.5 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If |X ′(t, ·)| is a quasi-convex stochastic

process, then the forecoming inequality holds almost everywhere:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

(24)

≤ (b− a)

4
max{|X ′(a, ·)|+ |X ′(b, ·)|}.

Proof.

Using the above information and Lemma 3.1 we obtain

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(b− a)

2

∫ 1

0
(1− 2t)X ′(ta+ (1− t)b, ·)dt

∣

∣

∣

∣

∣

≤ (b− a)

2

∫ 1

0
|1− 2t||X ′(ta + (1− t)b, ·)|dt

≤ (b− a)

2

∫ 1

0
|1− 2t|max{|X ′(a, ·)|, |X ′(b, ·)|}dt

=
(b− a)

2
max{|X ′(a, ·)|, |X ′(b, ·)|]

(∫ 1

0
|1− 2t|dt

)

=
(b− a)

4
max{|X ′(a, ·)|, |X ′(b, ·)|}, (a.e).

Now we present corresponding version of the previous result for stochastic
processes whose first derivatives at certain powers are convex.

Theorem 3.6 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If |X ′(t, ·)|p/(p−1) is a convex stochastic

process, for p > 1, then the following inequality holds almost everywhere:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

(25)

≤ (b− a)

2(p+ 1)1/p

[

|X ′(a, ·)|q + |X ′(b, ·)|q
2

]1/q

,

where q = p/(p− 1).
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Proof.

Simply calculations show

∫ 1

0
|1− 2t|pdt = 2

∫ 1/2

0
(1− 2t)pdt =

1

p+ 1
, (26)

Then, from Lemma 3.1 and using the well known Hölder integral inequality,
we have successively:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(b− a)

2

∫ 1

0
(1− 2t)X ′(ta + (1− t)b, ·))dt

∣

∣

∣

∣

∣

≤ (b− a)

2

∫ 1

0
|1− 2t||X ′(ta+ (1− t)b, ·)|dt

≤ (b− a)

2

(∫ 1

0
|X ′(ta+ (1− t)b, ·)|qdt

)1/q

·
(∫ 1

0
|1− 2t|pdt

)1/p

=
(b− a)

2

(∫ 1

0
|X ′(ta + (1− t)b, ·)|qdt

)1/q
(

1

p+ 1

)1/p

≤ (b− a)

2(p+ 1)1/p

(∫ 1

0
{t|X ′(a, ·)|q + (1− t)|X ′(b, ·)|q} dt

)1/q

=
(b− a)

2(p+ 1)1/p

[

|X ′(a, ·)|q + |X ′(b, ·)|q
2

]1/q

The previous theorem can be improved as Pearce and Pečarić did in [13]
for functions in [13], as follows:

Theorem 3.7 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If |X ′(t, ·)|p/(p−1) is a convex stochastic

process, for p > 1, then the incoming inequality holds almost everywhere:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

(27)

≤ (b− a)

4

[

|X ′(a, ·)|q + |X ′(b, ·)|q
2

]1/q

,

where q = p/(p− 1).
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Proof.

It is readily stablished the two forecoming equalities:

∫ 1

0
|1− 2t|tdt =

∫ 1/2

0
(1− 2t)tdt+

∫ 1

1/2
(2t− 1)tdt =

1

4
,

∫ 1

0
|1− 2t|(1− t)dt =

∫ 1/2

0
(1− 2t)(1− t)dt+

∫ 1

1/2
(2t− 1)(1− t)dt =

1

4
.

Hence by Lemma 3.1:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

(28)

=
(b− a)

2

∫ 1

0
|(1− 2t)||X ′(ta+ (1− t)b, ·))|dt,

and by the power mean inequality

∫ 1

0
|(1− 2t)||X ′(ta+ (1− t)b, ·))|dt

≤
(∫ 1

0
|1− 2t|dt

)1−1/q (∫ 1

0
|1− 2t||X ′(ta + (1− t)b, ·)|qdt

)1/q

.

Because of the convexity of |X ′|, we obtain

∫ 1

0
|1− 2t||X ′(ta+ (1− t)b, ·)|qdt

≤
∫ 1

0
|1− 2t| {t|X ′(a, ·)|q + (1− t)|X ′(b, ·)|q} dt

= |X ′(a, ·)|q
∫ 1

0
|1− 2t|tdt+ |X ′(b, ·)|q

∫ 1

0
|1− 2t|(1− t)dt

=
|X ′(a, ·) +X ′(b, ·)|

4
.

Since
∫ 1
0 |1− 2t|dt = 1

2
, from (28) and the displayed inequality,

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

=
(b− a)

2

(

1

2

)1−1/q
{

|X ′(a, ·))|q + |X ′(b, ·))|q
4

}1/q

=
(b− a)

4

{

|X ′(a, ·))|q + |X ′(b, ·))|q
2

}1/q

.
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Remark 1. Note that the previous result gives an improvement of the bound
obtained in Theorem 3.6. Since p > 1 then 2p > p+ 1 and accordingly

1

4
<

1

2(p+ 1)1/p
.

In order to prove an analogous result for the left-hand side of Hermite-
Hadamard inequality whose first derivatives at certain powers are convex, we
show the following theorem:

Theorem 3.8 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If |X ′(t, ·)|p/(p+1) is a convex stochastic

process, for p > 1, then next inequality is true almost everywhere:

∣

∣

∣

∣

∣

X

(

a+ b

2
, ·
)

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

≤ (b− a)

2(p+ 1)1/p

[

|X ′(a, ·)|q + |X ′(b, ·)|q
2

]1/q

,

(29)
where q = p/(p− 1).

Proof.

First, point out that

∫ 1

0
|K(t)|pdt =

∫ 1/2

0
|t|pdt+

∫ 1

1/2
|t− 1|pdt

=
∫ 1/2

0
tpdt+

∫ 1

1/2
(1− t)pdt =

1

(p+ 1)2p
.

(30)

From Lemma 3.3 and using the well known Hölder integral inequality, we
obtain:

∣

∣

∣

∣

∣

X

(

a + b

2
, ·
)

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

(b− a)
∫ 1

0
K(t)X ′(ta+ (1− t)b, ·))dt

∣

∣

∣

∣

≤ (b− a)
∫ 1

0
|K(t)||X ′(ta+ (1− t)b, ·)|dt

≤ (b− a)
(
∫ 1

0
|X ′(ta + (1− t)b, ·)|qdt

)1/q

·
(∫ 1

0
|K(t)|pdt

)1/p
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= (b− a)
(∫ 1

0
|X ′(ta+ (1− t)b, ·)|qdt

)1/q
(

1

(p+ 1)2p

)1/p

≤ (b− a)

2(p+ 1)1/p

(∫ 1

0
{t|X ′(a, ·)|q + (1− t)|X ′(b, ·)|q} dt

)1/q

=
(b− a)

2(p+ 1)1/p

[

|X ′(a, ·)|q + |X ′(b, ·)|q
2

]1/q

, (a.e).

The next result improve Theorem 3.8.

Theorem 3.9 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If |X ′(t, ·)|p/(p−1) is a convex stochastic

process, for p > 1, then the following inequality holds almost everywhere:

∣

∣

∣

∣

∣

X

(

a + b

2
, ·
)

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

(31)

≤ (b− a)

4

[

|X ′(a, ·)|q + |X ′(b, ·)|q
2

]1/q

,

where q = p/(p− 1).

Proof.

First we must note that

∫ 1

0
|K(t)|tdt =

∫ 1/2

0
t2dt+

∫ 1

1/2
t(1− t)dt =

1

8
,

∫ 1

0
|K(t)|(1− t)dt =

∫ 1/2

0
t(1− t)dt+

∫ 1

1/2
(1− t)2dt =

1

8
.

From Lemma 3.1, we have

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

(32)

= (b− a)
∫ 1

0
|K(t)||X ′(ta + (1− t)b, ·))|dt,

and by the power mean inequality

∫ 1

0
|(1− 2t)||X ′(ta+ (1− t)b, ·))|dt

≤
(∫ 1

0
|1− 2t|dt

)1−1/q (∫ 1

0
|1− 2t||X ′(ta + (1− t)b, ·)|qdt

)1/q

.
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Because |X ′| is convex, we obtain that

∫ 1

0
|1− 2t||X ′(ta+ (1− t)b, ·)|qdt

≤
∫ 1

0
|1− 2t| {t|X ′(a, ·)|q + (1− t)|X ′(b, ·)|q} dt

= |X ′(a, ·)|q
∫ 1

0
|1− 2t|tdt+ |X ′(b, ·)|q

∫ 1

0
|1− 2t|(1− t)dt

=
|X ′(a, ·) +X ′(b, ·)|

4
.

Since
∫ 1
0 |1−2t|dt = 1

2
, we have from (32) and the displayed inequality that

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

= (b− a)
(

1

4

)1−1/q
{

|X ′(a, ·))|q + |X ′(b, ·))|q
8

}1/q

=
(b− a)

4

{

|X ′(a, ·))|q + |X ′(b, ·))|q
2

}1/q

Remark 2. The improvement of the constant gave in Theorem 3.8, is obtained
because if p > 1 then 2p > p+ 1 and accordingly

1

4
<

1

2(p+ 1)1/p
.

In [6], Ion obtained a refined inequality of the right-hand side of Hermite-
Hadamard’s type for function, whose derivatives in absolute valued for certain
powers are quasi-convex stochastic processes. Here, we present a counterpart
of this result.

Theorem 3.10 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If |X ′(t, ·)|p/(p−1) is a quasi-convex

stochastic process, then the following inequality is true almost everywhere:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

(33)

≤ (b− a)

2(p+ 1)1/p
max{|X ′(a, ·)|q + |X ′(b, ·)|q}1/q.
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Proof.

Using the above information and Lemma 3.1 we obtain

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(b− a)

2

∫ 1

0
(1− 2t)X ′(ta+ (1− t)b, ·)dt

∣

∣

∣

∣

∣

≤ (b− a)

2

∫ 1

0
|1− 2t||X ′(ta+ (1− t)b, ·)|dt

≤ (b− a)

2

(∫ 1

0
|X ′(ta+ (1− t)b, ·)|q]dt

)1/q

·
(∫ 1

0
|1− 2t|pdt

)1/p

≤ (b− a)

2

(∫ 1

0
max{|X ′(a, ·)|q, |X ′(b, ·)|q}dt

)1/q
(

1

p+ 1

)1/p

=
(b− a)

2(p+ 1)1/p
(max{|X ′(a, ·)|q, |X ′(b, ·)|q})1/q, (a.e).

In order to prove refined inequalities of the right-hand side of Hermite-
Hadamard’s type for stochastic processes whose second derivatives at certain
powers are convex and quasi-convex stochastic processes, we present the fol-
lowing lemma which shows a Montgomery identity type.

Lemma 3.11 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If X ′′(t, ·) is mean-square integrable

on [a, b], then the following equality takes place almost everywhere:

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du (34)

=
(b− a)2

2

∫ 1

0
t(1− t)X ′′(ta+ (1− t)b, ·))dt.

Proof.

Let us calculate the integral on the right-hand side integrating by parts

∫ 1

0
(1− 2t)X ′′(ta + (1− t)b, ·)dt =

1

(b− a)

∫ 1

0
X ′(ta + (1− t)b, ·)dt

=
1

(b− a)2
[X(a, ·) +X(b, ·)]
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− 2

(b− a)2

∫ 1

0
X(ta+ (1− t)b, ·)dt, (a.e).

By multiplying both sides of the integral by (b− a)2/2, we have

(b− a)2

2

∫ 1

0
t(1− t)X ′′(ta+ (1− t)b, ·)dt

=
X(a, ·) +X(b, ·)

2
−
∫ 1

0
X(ta + (1− t)b, ·)dt, (a.e).

Making the change of variable u = ta+(1− t)b in the integral of the right-
hand side, the desired result comes up.

The following result, shows an estimate of the right-hand side of the Hermite-
Hadamard inequality by convex second derivate in absolute value.

Theorem 3.12 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If |X ′′(t, ·)| is a convex stochastic

process, then next inequality holds almost everywhere:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

(35)

≤ (b− a)

6
{|X ′′(a, ·)|+ |X ′′(b, ·)|}.

Proof.

Because for t ∈ [0, 1] implies 0 ≤ t(1− t)2 ≤ (1− t)2 and 0 ≤ (1− t)t2 ≤ t2,

∫ 1

0
t(1− t)2dt ≤

∫ 1

0
(1− t)2dt =

1

3
,

∫ 1

0
(1− t)t2dt ≤

∫ 1

0
t2dt =

1

3
.

Next, using the above information and Lemma 3.11:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(b− a)2

2

∫ 1

0
t(1 − t)X ′′(ta+ (1− t)b, ·)dt

∣

∣

∣

∣

∣

≤ (b− a)2

2

∫ 1

0
t(1 − t)|X ′′(ta + (1− t)b, ·)|dt
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leq
(b− a)2

2

∫ 1

0
t(1− t){t|X ′′(a, ·)|+ (1− t)|X ′′(b, ·)|}dt

=
(b− a)2

2

∫ 1

0
t2(1− t)|X ′′(a, ·)|dt+

∫ 1

0
t(1− t)2|X ′′(b, ·)|dt

=
(b− a)2

2
|X ′′(a, ·)|

∫ 1

0
t2(1− t)dt+ |X ′′(b, ·)|

∫ 1

0
t(1− t)2dt

=
(b− a)2

2

{

1

3
|X ′′(a, ·)|+ 1

3
|X ′′(b, ·)|

}

=
(b− a)2

6
{|X ′′(a, ·)|+ |X ′′(b, ·)|} , (a.e).

In the next theorem, we present a refined inequality of the right-hand side
of Hermite-Hadamard’s type stochastic processes whose second derivative in
absolute valued for certain powers are convex.

Theorem 3.13 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If |X ′′(t, ·)|p/p−1 is a convex stochastic

process, then the following inequality holds almost everywhere:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

≤ (b− a)2

8

(√
π

2

)1/p




Γ(1 + p)

Γ
(

3
2
+ p

)





1/p [
|X ′′(a, ·)|q + |X ′′(b, ·)|q

2

]1/q

,

where q = p/(p− 1).

Proof.

We use the equality

∫ 1

0
[t(1− t)]pdt =

2−1−2p
√
πΓ(1 + p)

Γ
(

3
2
+ p

) . (36)

where Γ(·) represents the Gamma function.
By the above information and Lemma 3.11:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(b− a)2

2

∫ 1

0
t(1− t)X ′′(ta + (1− t)b, ·)dt

∣

∣

∣

∣

∣
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≤ (b− a)2

2

∫ 1

0
t(1− t)|X ′′(ta+ (1− t)b, ·)|dt

≤ (b− a)2

2

(∫ 1

0
|X ′′(ta + (1− t)b, ·)|qdt

)1/q

dt

·
(
∫ 1

0
[t(1− t)]pdt

)1/p

≤ (b− a)2

2





2−1−2p
√
πΓ(1 + p)

Γ
(

3
2
+ p

)





1/p

·
(∫ 1

0
t|X ′′(a, ·)|q + (1− t)|X ′′(a, ·)|qdt

)1/q

=
(b− a)2

8

(√
π

2

)1/p




Γ(1 + p)

Γ
(

3
2
+ p

)





1/p

·
[

|X ′′(a, ·)|q + |X ′′(a, ·)|q
2

]1/q

, (a.e).

As a counterpart of a result exposed by Alomari et al. in [2], we show
in the following theorem an inequality for stochastic processes with second
derivatives in absolute values are quasi-convex.

Theorem 3.14 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If |X ′′(t, ·)| is a quasi-convex stochastic

process, then the following inequality holds almost everywhere:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

(37)

≤ (b− a)2

12
max{|X ′′(a, ·)|, |X ′′(b, ·)|}.

Proof.

It is clear that

∫ 1

0
t(1− t)dt =

1

6
. (38)

Hence by (38) and Lemma 3.11, we obtain

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

(b− a)2

2

∫ 1

0
t(1− t)X ′′(ta + (1− t)b, ·)dt

∣

∣

∣

∣

∣

≤ (b− a)2

2

∫ 1

0
t(1− t)|X ′′(ta+ (1− t)b, ·)|dt

≤ (b− a)2

2

∫ 1

0
t(1− t)max{|X ′′(a, ·)|, |X ′′(b, ·)|}dt

=
(b− a)2

2
max{|X ′′(a, ·)|, |X ′′(b, ·)|}

∫ 1

0
t(1− t)dt,

=
(b− a)2

12
max{|X ′′(a, ·)|, |X ′′(b, ·)|}, (a.e).

In the next result, we present another counterpart Alomari’s et al. work [2].
Here we give a refined inequality of the right-hand side of Hermite-Hadamard’s
type for stochastic processes whose second derivative in absolute valued for
certain powers are quasi-convex.

Theorem 3.15 Let X : I × Ω → R be a stochastic process mean-square

differentiable on I◦, a, b ∈ I with a < b. If |X ′′(t, ·)|p/p−1 is a quasi-convex

stochastic process, then the following inequality holds almost everywhere:

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

(39)

≤ (b− a)2

8

(√
π

2

)1/p




Γ(1 + p)

Γ
(

3
2
+ p

)





1/p

max{|X ′′(a, ·)|q, |X ′′(b, ·)|q}1/q.

where q = p/(p− 1).

Proof.

In the same way that in the Theorem 3.13, we have to use the integral (36).
Then, by using the above information and Lemma 3.11, we get

∣

∣

∣

∣

∣

X(a, ·) +X(b, ·)
2

− 1

(b− a)

∫ b

a
X(u, ·)du

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(b− a)2

2

∫ 1

0
t(1− t)X ′′(ta + (1− t)b, ·)dt

∣

∣

∣

∣

∣

≤ (b− a)2

2

∫ 1

0
t(1− t)|X ′′(ta+ (1− t)b, ·)|dt

≤ (b− a)2

2

(∫ 1

0
|X ′′(ta + (1− t)b, ·)|qdt

)1/q

dt
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·
(∫ 1

0
[t(1− t)]pdt

)1/p

≤ (b− a)2

2





2−1−2p
√
πΓ(1 + p)

Γ
(

3
2
+ p

)





1/p

·
(∫ 1

0
max{|X ′′(a, ·)|q, |X ′′(a, ·)|q}dt

)1/q

=
(b− a)2

8

(√
π

2

)1/p




Γ(1 + p)

Γ
(

3
2
+ p

)





1/p

· [max{|X ′′(a, ·)|q, |X ′′(a, ·)|q}]1/q , (a.e).
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[5] L. Fejr, Über die Fourierreihen, II Math. Naturwiss, Anz. Ungar, Akad.
Wiss., 24, 1906, pp. 369-390.

[6] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through

quasi-convex function, Annals of University of Craiova Math. Comp., 147,
(2004), 137-146.

[7] U. S. Kirmaci, Inequalities for differentiable mappings and applications

to special means of real numbers to midpoint formula, Applied Mathemat-
ics and Computation, 147, (2004) 137 - 146.



Estimates on the Hermite-Hadamard inequality for stochastic processes 767

[8] D. Kotrys, Hermite-Hadamard inequality for convex stochastic pro-

cesses, Aequationes Math., 83, (2011) 143 - 151.

[9] D. Kotrys, Remarks on strongly convex stochastic processes, The arti-
cle is published with open access at Springerlink.com Aequationes Math.
(2012).

[10] D. Kotrys, Some characterizations of strongly convex stochastic pro-

cesses, Mathematica Aeterna, 4 (8), (2014) 855 - 861.

[11] K. Nikodem, On convex stochastic processes, Aequationes Math., 20,
(1980), 184 -197.

[12] K. Nikodem, On quadratic stochastic processes, Aequationes Math., 21,
(1980) 192 -199.
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