Bialgebra structures on simple 3-Lie algebra

BAI Ruipu

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China email: bairuipu@hbu.edu.cn

Guo Weiwei

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Abstract

The bialgebra structure on the finite dimensional simple 3-Lie algebra L_e over the field of complex numbers is studied. It is proved that there exist only three non-equivalent bialgebra structures on L_e , which are $(L_e, 0)$, (L_e, C_{c_3}, Δ_1) and (L_e, C_{c_3}, Δ_2) .

2010 Mathematics Subject Classification: 17B05 17D30 Keywords: 3-Lie algebra, 3-Lie coalgebra, 3-Lie bialgebra.

1 Preliminaries

Authors in paper [1] provided 3-Lie algebra, and then bialgebra structures on the 4-dimensional 3-Lie algebras L_b , L_c , L_d are discussed [2, 3, 4, 5, 6]. In this paper we discuss bialgebra structures on the finite dimensional simple 3-Lie algebra L_e [7] over the field of complex numbers.

W. Ling in paper [8] proved that there exists only one finite dimensional simple 3-Lie algebra over the complex field, that is the simple 4-dimensional 3-Lie algebra. Suppose L is a 4-dimensional vector space with a basis e_1, e_2, e_3, e_4 . Then L is the simple 3-Lie algebra in the multiplication $\mu_e: L \wedge L \wedge L \to L$:

$$\mu_e(e_2, e_3, e_4) = e_1, \mu_e(e_1, e_3, e_4) = e_2, \mu_e(e_1, e_2, e_4) = e_3, \mu_e(e_1, e_2, e_3) = e_4,$$

and which is denoted by L_e .

A 3-Lie coalgebra (L, Δ) [1] is a vector space L with a linear mapping $\Delta: L \to L \otimes L \otimes L$ satisfying

(1) $Im(\Delta) \subset L \wedge L \wedge L$, $(2)(1 - \omega_1 - \omega_2 - \omega_3)(1 \otimes 1 \otimes \Delta)\Delta = 0$, where 1 is the identity, linear maps $\omega_1, \omega_2, \omega_3 : L^{\otimes 5} \to L^{\otimes 5}$ satisfying identities $\omega_1(x_1 \otimes x_2 \otimes x_3 \otimes x_4 \otimes x_5) = x_3 \otimes x_4 \otimes x_1 \otimes x_2 \otimes x_5$, $\omega_2(x_1 \otimes x_2 \otimes x_3 \otimes x_4 \otimes x_5) = x_4 \otimes x_5 \otimes x_1 \otimes x_2 \otimes x_3$, $\omega_3(x_1 \otimes x_2 \otimes x_3 \otimes x_4 \otimes x_5) = x_5 \otimes x_3 \otimes x_1 \otimes x_2 \otimes x_4$.

A 3-Lie bialgebra [1] is a triple (L, μ, Δ) such that

- (1) (L,μ) is a 3-Lie algebra with the multiplication $\mu: L \wedge L \wedge L \to L$,
- (2) (L, Δ) is a 3-Lie coalgebra with $\Delta: L \to L \wedge L \wedge L$,
- (3) Δ and μ satisfy the following identity, for $x, y, u, v, w \in L$,

$$\Delta\mu(x,y,z) = ad_{\mu}^{(3)}(x,y)\Delta(z) + ad_{\mu}^{(3)}(y,z)\Delta(x) + ad_{\mu}^{(3)}(z,x)\Delta(y),$$

where $ad_{\mu}^{(3)}(x,y)$, $ad_{\mu}^{(3)}(z,x)$, $ad_{\mu}^{(3)}(y,z):L\otimes L\otimes L\to L\otimes L\otimes L$ are linear maps defined by (similar for $ad_{\mu}^{(3)}(z,x)$ and $ad_{\mu}^{(3)}(y,z)$)

$$ad_{\mu}^{(3)}(x,y)(u \otimes v \otimes w) = (ad_{\mu}(x,y) \otimes 1 \otimes 1)(u \otimes v \otimes w) + (1 \otimes ad_{\mu}(x,y) \otimes 1)(u \otimes v \otimes w) + (1 \otimes 1 \otimes ad_{\mu}(x,y))(u \otimes v \otimes w) = \mu(x,y,u) \otimes v \otimes w + u \otimes \mu(x,y,v) \otimes w + u \otimes v \otimes \mu(x,y,w).$$

Let V be a vector space, $\Delta: V \to V \otimes V \otimes V$ be a linear mapping, V^* be the dual space of V and Δ^* be the dual mapping of Δ . Then for all $f \in V^*, x_1, x_2, x_3 \in V$, $\langle \Delta(f), x_1 \otimes x_2 \otimes x_3 \rangle = \langle f, \Delta^*(x_1, x_2, x_3) \rangle$.

We give the classification of 4-dimensional 3-Lie coalgebras.

Lemma 2.1 [1, 9] Let (L, Δ) be a 4-dimensional 3-Lie coalgebra with a basis e_1 , e_2 , e_3 , e_4 . Then L is isomorphic to one and only one of the following possibilities: C_a . (L, Δ_a) is trivial;

$$C_{b_1}. \ \Delta_{b_1}(e^1) = e^2 \wedge e^3 \wedge e^4; \quad C_{b_2}. \ \Delta_{b_2}(e^1) = e^1 \wedge e^2 \wedge e^3;$$

$$C_{c_1}. \ \Delta_{c_1}(e^1) = e^2 \wedge e^3 \wedge e^4, \quad \Delta_{c_1}(e^2) = e^1 \wedge e^3 \wedge e^4;$$

$$C_{c_2}. \ \Delta_{c_2}(e^1) = \alpha e^2 \wedge e^3 \wedge e^4, \Delta_{c_2}(e^2) = e^2 \wedge e^3 \wedge e^4 + e^1 \wedge e^3 \wedge e^4;$$

$$C_{c_3}. \ \Delta_{c_3}(e^1) = e^1 \wedge e^3 \wedge e^4, \Delta_{c_3}(e^2) = e^2 \wedge e^3 \wedge e^4;$$

$$C_{d}. \ \Delta_{d}(e^1) = e^2 \wedge e^3 \wedge e^4, \Delta_{d}(e^2) = e^1 \wedge e^3 \wedge e^4, \Delta_{d}(e^3) = e^1 \wedge e^2 \wedge e^4;$$

$$C_{e}. \ \Delta_{e}(e^1) = e^2 \wedge e^3 \wedge e^4, \Delta_{e}(e^2) = e^1 \wedge e^3 \wedge e^4, \Delta_{e}(e^3) = e^1 \wedge e^2 \wedge e^4,$$

$$\Delta_{e}(e^4) = e^1 \wedge e^2 \wedge e^3, \text{ where } \alpha \in F, \alpha \neq 0.$$

For convenience, in the following, for a 3-Lie bialgebra (L, μ, Δ) , if the 3-Lie algebra (L, μ) is the case (L, μ_e) , and the 3-Lie coalgebra (L, Δ) is the case (L, Δ_{c_1}) for example, then the 3-Lie bialgebra (L, μ_e, Δ_{c_1}) is simply denoted by (L_e, C_{c_1}) , which is called the 3-Lie bialgebra of type (L_e, C_{c_1}) .

2 Bialgebra structures on L_e

For a given 3-Lie algebra L, in order to find all the 3-Lie bialgebra structures on L, we should find all the 3-Lie coalgebra structures on L which are compatible with the 3-Lie algebra L. Although a permutation of a basis of L

gives isomorphic 3-Lie coalgebra, but it may lead to the non-equivalent 3-Lie bialgebras.

Theorem The only bialgebra structures on the finite dimensional simple 3-Lie algebra L_e are (L_e, Δ_0) , (where $\Delta_0 = 0 : L \to L^{\otimes 3}$), and (L_e, C_{c_3}) . And the non-equivalent 3-Lie bialgebras of the type (L_e, C_{c_3}) are as follows:

$$(L_e, C_{c_3}, \Delta_1)\Delta_1 e_1 = e_1 \wedge e_3 \wedge e_4, \Delta_1 e_2 = e_2 \wedge e_3 \wedge e_4;$$

 $(L_e, C_{c_3}, \Delta_2) \Delta_2 e_1 = e_1 \wedge e_2 \wedge e_4, \Delta_2 e_3 = e_3 \wedge e_2 \wedge e_4.$

Proof It is clear that 3-Lie algebra L_e is compatible with coalgebra (L, Δ_0) , where $\Delta_0 = 0 : L \to L^{\otimes 3}$. From Lemma 2.1, by means of permutating a basis of L, we obtain the twelve isomorphic 3-Lie coalgebras of type C_{c_3} as follows:

- (1) $\Delta(e_1) = e_1 \wedge e_3 \wedge e_4, \Delta(e_2) = e_2 \wedge e_3 \wedge e_4;$
- (2) $\Delta(e_1) = e_1 \wedge e_4 \wedge e_3, \ \Delta(e_2) = e_2 \wedge e_4 \wedge e_3;$
- (3) $\Delta(e_1) = e_1 \wedge e_2 \wedge e_4, \Delta(e_3) = e_3 \wedge e_2 \wedge e_4;$
- (4) $\Delta(e_1) = e_1 \wedge e_4 \wedge e_2, \Delta(e_3) = e_3 \wedge e_4 \wedge e_2;$
- (5) $\Delta(e_1) = e_1 \wedge e_3 \wedge e_2$, $\Delta(e_4) = e_4 \wedge e_3 \wedge e_2$;
- (6) $\Delta(e_1) = e_1 \wedge e_2 \wedge e_3, \Delta(e_4) = e_4 \wedge e_2 \wedge e_3;$
- (7) $\Delta(e_2) = e_2 \wedge e_4 \wedge e_1, \Delta(e_3) = e_3 \wedge e_4 \wedge e_1;$
- (8) $\Delta(e_2) = e_2 \wedge e_1 \wedge e_4, \ \Delta(e_3) = e_3 \wedge e_1 \wedge e_4;$
- (9) $\Delta(e_2) = e_2 \wedge e_3 \wedge e_1, \Delta(e_4) = e_4 \wedge e_3 \wedge e_1;$
- $(10)\Delta(e_2) = e_2 \wedge e_1 \wedge e_3, \Delta(e_4) = e_4 \wedge e_1 \wedge e_3;$
- $(11)\Delta(e_3) = e_3 \wedge e_1 \wedge e_2, \ \Delta(e_4) = e_4 \wedge e_1 \wedge e_2;$
- $(12)\Delta(e_3) = e_3 \wedge e_2 \wedge e_1, \Delta(e_4) = e_4 \wedge e_2 \wedge e_1.$

By a direct computation, the above twelve 3-Lie coalgebras are compatible with the 3-Lie algebra L_e , So we get 3-Lie bialgebras (L_e, C_{c_3}, Δ) . By the following isomorphisms of the 4-Lie bialgebras

- $(1) \rightarrow (5): f(e_1) = -e_4, f(e_2) = e_1, f(e_3) = e_2, f(e_4) = -e_3;$
- $(1) \rightarrow (11): f(e_1) = e_3, f(e_2) = e_4, f(e_3) = e_1, f(e_4) = e_2;$
- $(3) \rightarrow (9): f(e_1) = e_2, f(e_2) = e_1, f(e_3) = e_4, f(e_4) = -e_3;$
- $(1) \rightarrow (2), (11) \rightarrow (12): f(e_1) = e_1, f(e_2) = -e_2, f(e_3) = -e_3, f(e_4) = e_4;$
- $(1) \to (8), (2) \to (7): f(e_1) = -e_3, f(e_2) = e_2, f(e_3) = e_1, f(e_4) = e_4;$
- $(3) \to (4), (5) \to (6), (9) \to (10)$:

$$f(e_1) = -e_1, f(e_2) = -e_2, f(e_3) = e_3, f(e_4) = e_4;$$

we get the non-equivalent 3-Lie bialgebras of type (L_e, C_{c_3}) are (L_e, C_{c_3}, Δ_1) and (L_e, C_{c_3}, Δ_2) .

Now we prove that there does not exist 3-Lie bialgebra of type (L_e, C_b) .

First, we prove that there does not exist 3-Lie bialgebra of type (L_e, C_{b_1}) . By Lemma 2.1, by means of permutating a basis of L, we obtain the eight isomorphic 3-Lie coalgebras of type C_{b_1} :

- $(1) \Delta (e_1) = e_2 \wedge e_3 \wedge e_4; (2) \Delta(e_1) = e_2 \wedge e_4 \wedge e_3; (3) \Delta(e_2) = e_1 \wedge e_4 \wedge e_3;$
- (4) $\Delta(e_2) = e_1 \wedge e_3 \wedge e_4$; (5) $\Delta(e_3) = e_1 \wedge e_2 \wedge e_4$; (6) $\Delta(e_3) = e_1 \wedge e_4 \wedge e_2$;

(7)
$$\Delta(e_4) = e_1 \wedge e_2 \wedge e_3$$
; (8) $\Delta(e_4) = e_2 \wedge e_1 \wedge e_3$.

By a direct computation, the above 3-Lie coalgebras are incompatible with the 3-Lie algebra L_e . Therefore there does not exist 3-Lie bialgebra (L_d, C_{b_1}) .

Second, from Lemma 2.1, we have twenty four isomorphic 3-Lie coalgebras of the type C_{b_0} :

$$(1)\Delta(e_1) = e_1 \wedge e_2 \wedge e_3; (2)\Delta(e_1) = e_1 \wedge e_2 \wedge e_4; (3)\Delta(e_1) = e_1 \wedge e_3 \wedge e_4;$$

$$(4)\Delta(e_1) = e_1 \wedge e_3 \wedge e_2; (5)\Delta(e_1) = e_1 \wedge e_4 \wedge e_2; (6)\Delta(e_1) = e_1 \wedge e_4 \wedge e_3;$$

$$(7)\Delta(e_2) = e_2 \wedge e_1 \wedge e_3; (8)\Delta(e_2) = e_2 \wedge e_1 \wedge e_4; (9)\Delta(e_2) = e_2 \wedge e_3 \wedge e_4;$$

$$(10)\Delta(e_2) = e_2 \wedge e_3 \wedge e_1; (11)\Delta(e_2) = e_2 \wedge e_4 \wedge e_1; (12)\Delta(e_2) = e_2 \wedge e_4 \wedge e_3;$$

$$(13)\Delta(e_3) = e_3 \wedge e_1 \wedge e_2; (14)\Delta(e_3) = e_3 \wedge e_1 \wedge e_4; (15)\Delta(e_3) = e_3 \wedge e_2 \wedge e_4;$$

$$(16)\Delta(e_3) = e_3 \wedge e_2 \wedge e_1; (17)\Delta(e_3) = e_3 \wedge e_4 \wedge e_1; (18)\Delta(e_3) = e_3 \wedge e_4 \wedge e_2;$$

$$(19)\Delta(e_4) = e_4 \wedge e_1 \wedge e_2; (20)\Delta(e_4) = e_4 \wedge e_1 \wedge e_3; (21)\Delta(e_4) = e_4 \wedge e_2 \wedge e_3; (22)\Delta(e_4) = e_4 \wedge e_2 \wedge e_1; (23)\Delta(e_4) = e_4 \wedge e_3 \wedge e_1; (24)\Delta(e_4) = e_4 \wedge e_3 \wedge e_2.$$

By a direct computation, the 3-Lie coalgebras of the type C_{b_2} are incompatible with the 3-Lie algebra L_e . Therefore, there does not exist 3-Lie bialgebras of type (L_e, C_b) .

Thirdly, we prove that there does not exist 3-Lie bialgebra of type (L_e, C_e) . By the similar discussion, we have six isomorphic 3-Lie coalgebras of the type C_e :

(1)
$$\Delta(e_1) = e_2 \wedge e_3 \wedge e_4, \Delta(e_2) = e_1 \wedge e_3 \wedge e_4, \Delta(e_3) = e_1 \wedge e_2 \wedge e_4, \Delta(e_4) = e_1 \wedge e_2 \wedge e_3;$$

(2)
$$\Delta(e_1) = e_2 \wedge e_3 \wedge e_4$$
, $\Delta(e_2) = e_1 \wedge e_3 \wedge e_4$, $\Delta(e_3) = e_2 \wedge e_1 \wedge e_4$, $\Delta(e_4) = e_2 \wedge e_1 \wedge e_3$;

$$(3)\Delta(e_1) = e_2 \wedge e_3 \wedge e_4, \ \Delta(e_2) = e_3 \wedge e_1 \wedge e_4, \ \Delta(e_3) = e_2 \wedge e_1 \wedge e_4, \ \Delta(e_4) = e_2 \wedge e_3 \wedge e_1;$$

(4)
$$\Delta(e_1) = e_2 \wedge e_4 \wedge e_3$$
, $\Delta(e_2) = e_1 \wedge e_4 \wedge e_3$, $\Delta(e_3) = e_2 \wedge e_1 \wedge e_4$, $\Delta(e_4) = e_2 \wedge e_1 \wedge e_3$;

(5)
$$\Delta(e_1) = e_2 \wedge e_4 \wedge e_3$$
, $\Delta(e_2) = e_4 \wedge e_1 \wedge e_3$, $\Delta(e_3) = e_2 \wedge e_4 \wedge e_1$, $\Delta(e_4) = e_2 \wedge e_1 \wedge e_3$;

(6)
$$\Delta(e_1) = e_2 \wedge e_4 \wedge e_3$$
, $\Delta(e_2) = e_4 \wedge e_3 \wedge e_1$, $\Delta(e_3) = e_2 \wedge e_4 \wedge e_1$, $\Delta(e_4) = e_2 \wedge e_3 \wedge e_1$,

are incompatible with the 3-Lie algebra L_e .

Lastly, by completely similar discussion, we can prove that there do not exist 3-Lie bialgebras of types (L_e, C_{c_1}) , (L_e, C_{c_2}) and (L_e, C_d) . We omit the similar computation. The proof is complete.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014 201006).

References

- [1] R. Bai, Y. Cheng, J. Li, W. Meng, 3-Lie bialgebras, *Acta Math. Scientia*, 2014, 34B(2):513-522.
- [2] R. Bai, Y. Zhang, Classification of 3-Lie bialgebras of type (L_b, C_b) , Mathematica Aeterna, 2016, 6(1): 25 29.
- [3] R. Bai, Y. Zhang, 3-Lie bialgebras of type (L_b, C_c) , Mathematica Aeterna, 2016, 6(2): 153 157.
- [4] R. Bai, L. Li, 3-Lie bialgebras (L_b, C_d) and (L_b, C_e) , Mathematica Aeterna, 2016, 6(2): 159 163.
- [5] R. Bai, L. Lin, 3-Lie bialgebras (L_c, C_b) and (L_c, C_c) , Mathematica Aeterna, 2016, to appear.
- [6] R. Bai, W. Guo, 3-Lie bialgebras (L_c, C_d) and (L_c, C_e) , Mathematica Aeterna, 2016, to appear.
- [7] V. Filippov, n-Lie algebras, Sib. Mat. Zh., 26 (1985) 126-140.
- [8] W. Ling, On the structure of *n*-Lie algebras, Dissertation, University-GHS-Siegen, Siegn, 1993.
- [9] R. Bai, G. Song, Y. Zhang, On classification of *n*-Lie algebras, *Front. Math. China*, 2011, **6** (4):5 81-606.

Received: August, 2016