Mathematica Aeterna, Vol. 6, 2016, no. 5, 675 - 680

A Class of Univalent Harmonic Mappings

Jinjing Qiao

Department of Mathematics, Hebei University, Baoding, Hebei 071002, People's Republic of China

Qiannan Guo

Department of Mathematics, Hebei University, Baoding, Hebei 071002, People's Republic of China

Abstract

The main aim of this paper is to investigate a class of univalent harmonic mappings, which is the generalization of the class of analytic functions whose derivative has a positive real part. The distortion theorem, the radius of convexity, univalence of the partial sums, the extremal property of $f_0(z) = -z - 2\log(1-z)$, and functions with initial zero coefficients are considered.

Mathematics Subject Classification: Primary: 30C65, 30C45; Secondary: 30C20

Keywords: Harmonic mapping, univalence, distortion theorem, convexity, partial sum

1 Introduction

Assume that f = u + iv is a complex-valued harmonic function defined in the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, i.e. u and v are real harmonic in \mathbb{D} . Then f admits the decomposition $f = h + \overline{g}$, where h and g are analytic in \mathbb{D} , see [4]. Often h and g are referred to as the analytic and co-analytic parts of f, respectively. If in addition f is univalent in \mathbb{D} , then f has a non-vanishing Jacobian in \mathbb{D} , where the Jacobian of f is given by

$$J_f(z) = |f_z(z)|^2 - |f_{\bar{z}}(z)|^2 = |h'(z)|^2 - |g'(z)|^2.$$

We say that f is sense-preserving in \mathbb{D} if $J_f(z) > 0$ in \mathbb{D} . Moreover, the converse is also true, see [6]. If f is sense preserving, then the complex dilatation $\omega := g'/h'$ is analytic in \mathbb{D} and maps \mathbb{D} into \mathbb{D} .

The condition Ref'(z) > 0 is known to be sufficient for the univalence of an analytic function f in any convex domain, see [3, Theorem 2.16]. An early consideration of functions satisfying the condition Ref'(z) > 0 can be found in the paper by Alexander [1]. He proves: if f is analytic in \mathbb{D} and f' "maps \mathbb{D} upon a region contained within a half-plane bounded by a straight line through the origin", then f is univalent. Wolff [13] showed that f is univalent in Rez > 0 if it is analytic there and satisfies Ref'(z) > 0. Noshiro $[8,\,P_{151}]$ and Warschawski $[12,\,P_{312}]$ each demonstrated that Ref'(z)>0 is a sufficient condition for the univalence of f in any convex domain. Conversely, Tims [11] proved that for each simply connected nonconvex domain D there is a function f analytic in D such that Ref'(z) > 0 and f is not univalent in D. A more general class of functions than those satisfying Ref'(z) > 0 is the class of close-to-convex functions, which is univalent and the range is closeto-convex, see, for example, [3]. Let \mathcal{R} denote the class of analytic functions which satisfies Ref'(z) > 0 in \mathbb{D} and is normalized by f(0) = 0 and f'(0) = 1. Because of Alexander's result each function in \mathcal{R} is univalent, see [1]. In [7], author continued to investigate functions in \mathcal{R} , and considered distortion theorems, the radius of convexity, univalence of the partial sums, further extremal properties of $f_0(z) = -z - 2\log(1-z)$, and functions with initial zero coefficients. The aim of this paper is to generalize the results in [7] to the case of harmonic mappings.

A natural generalization of the class \mathcal{R} to the case of harmonic mappings is the class \mathcal{H} of harmonic mappings $f = h + \overline{g}$, defined by the condition Reh'(z) > |g'(z)| and satisfied h(0) = h'(0) - 1 = 0, g(0) = g'(0) = 0. Clearly, if $f = h + \overline{g} \in \mathcal{H}$, then $h \in \mathcal{R}$ and $h + e^{i\theta}g \in \mathcal{R}$ for each $\theta \in [0, 2\pi)$. This fact plays an important role in the proof of our main results. Harmonic mappings in \mathcal{H} have many interesting properties see [2, 5, 9]. In particular, the authors [9] have shown that $f \in \mathcal{H}$ is indeed close to convex in \mathbb{D} .

In this paper, we continue to consider the harmonic mappings in \mathcal{H} , and generalize the properties of functions in \mathcal{R} to the case of harmonic mappings in \mathcal{H} . By using different methods, we discuss the distortion theorem, the radius of convexity, univalence of the partial sums, extremal property of $f_0(z) = -z - 2\log(1-z)$, and functions with initial zero coefficients, which are generalizations of the corresponding results in [7] to the case of harmonic mappings.

2 Distortion theorem

In [9], the following result has been proved.

Theorem A Suppose that $f = h + \overline{g}$, where $h(z) = z + \sum_{k=2}^{\infty} a_k z^k$ and $g(z) = \sum_{k=2}^{\infty} b_k z^k$ in a neighborhood of the origin and $|b_1| < 1$. If

$$\sum_{k=2}^{\infty} k|a_k| + \sum_{k=2}^{\infty} k|b_k| \le 1,$$

then $f \in \mathcal{H}$.

In fact, we have the following sharp estimate of coefficients for $f \in \mathcal{H}$.

Theorem 2.1 If
$$f(z) = h(z) + g(z) = z + \sum_{k=2}^{\infty} a_k z^k + \sum_{k=2}^{\infty} \overline{b_k} \overline{z}^k \in \mathcal{H}$$
,
then
 $|a_k| + |b_k| \le \frac{2}{k}$ for $k = 2, 3, \cdots, |h'(z)| + |g'(z)| \le \frac{1 + |z|}{1 - |z|}$,
 $Re(h'(z)) \ge \frac{1 - |z|}{1 + |z|} + |g'(z)|$
 $-|z| + 2\log(1 + |z|) \le ||h(z)| - |g(z)|| \le |h(z)| + |g(z)| \le -|z| - 2\log(1 - |z|)$.
(1)

Since for $f = h + \overline{g} \in \mathcal{H}$, $h + e^{i\theta}g \in \mathcal{R}$ for each $\theta \in [0, 2\pi)$, that is $Re(h'(z) + e^{i\theta}g'(z)) > 0$ in \mathbb{D} . By using [7, Theorem 1], Theorem 2.1 follows.

Let $f_0(z) = -z - 2\log(1-z) = z + \sum_{n=2}^{\infty} (2/n)z^n$. By considering f_0 , we can verify that all estimates of this theorem are sharp. The next results follows from estimate (1).

Corollary 2.2 Each mapping in \mathcal{H} maps \mathbb{D} onto a domain which covers the disc $|\omega| < 2\log 2 - 1$.

3 The radius of convexity

We begin this section with the following lemma.

Lemma 3.1 ([4, P_{38} , Theorem]) Let $f = h + \overline{g}$ be harmonic and locally univalent in \mathbb{D} . Then f is univalent and its range is convex if and only if for each choice of α ($0 \le \alpha < 2\pi$), the analytic function $e^{i\alpha}h - e^{-i\alpha}g$ is univalent and its range is convex in the horizontal direction.

Theorem 3.2 Each mapping in \mathcal{H} maps $|z| < \sqrt{2} - 1$ onto a convex domain.

Proof Suppose that $f = h + \overline{g} \in \mathcal{H}$. Let

$$f_r(z) = \frac{1}{r}(h(rz) + \overline{g(rz)}) = h_r(z) + \overline{g_r(z)} \text{ and } f_\theta(z) = h(z) + e^{i\theta}g(z)$$

for 0 < r < 1. Then $f_r \in \mathcal{H}$, $f_{\theta} \in \mathcal{R}$. For the function $f_{\theta,\frac{1}{2}}(z) := 2f_{\theta}(\frac{1}{2}z) = h_{\frac{1}{2}}(z) + e^{i\theta}g_{\frac{1}{2}}(z)$, by using [7, Theorem 2] shows that $f_{\theta,\frac{1}{2}}$ maps \mathbb{D} onto a convex domain. Then for each $\alpha \in [0, 2\pi)$ and $\theta = \pi - 2\alpha$,

$$e^{i\alpha}f_{\theta,\frac{1}{2}}(z) = e^{i\alpha}h_{\frac{1}{2}}(z) + e^{i\alpha}e^{i\pi-2i\alpha}g_{\frac{1}{2}}(z) = e^{i\alpha}h_{\frac{1}{2}}(z) - e^{-i\alpha}g_{\frac{1}{2}}(z)$$

maps \mathbb{D} onto a convex domain, it follows from Lemma 3.1 that $f_{\frac{1}{2}}$ is convex, which implies that f maps |z| < 1/2 onto a convex domain.

For the function $f_0(z) = -z - 2\log(1-z)$, we have $[zf_0''(z)/f_0'(z) + 1] = (1+2z-z^2)/(1-z^2)$ and this last expression vanishes for $z = \sqrt{2} - 1$. Hence, this function maps no circle |z| < r larger than $|z| < \sqrt{2} - 1$ onto a convex domain.

4 Univalence of the partial sums

It is interesting to determine to what extent a given property of a power series is carried over to its partial sums. Szegö [10] has shown that all of the partial sums of a function univalent in \mathbb{D} are univalent in |z| < 1/4. For mappings in \mathcal{R} , authors [7] proved that the constant 1/4 can be improved to 1/2. We generalize this result to the case of harmonic mappings.

Theorem 4.1 Let $f(z) = h(z) + \overline{g(z)} = z + \sum_{k=2}^{\infty} a_k z^k + \sum_{k=2}^{\infty} \overline{b_k} \overline{z^k} \in \mathcal{H}$. Then $f_n(z) = h_n(z) + \overline{g_n(z)} = z + \sum_{k=2}^n a_k z^k + \sum_{k=2}^n \overline{b_k} \overline{z^k}$ is univalent in |z| < 1/2 for $n = 2, 3, \cdots$.

Proof Since $f = h + \overline{g} \in \mathcal{H}$, it follows that $f_{\theta} = h + e^{i\theta}g \in \mathcal{R}$. From the proof of [7, Theorem 4], we obtain that $Re(h'_n(z) + e^{i\theta}g'_n(z)) > 0$ in |z| < 1/2, which implies that $Reh'_n(z) > |g'_n(z)|$ in |z| < 1/2, and then f_n is univalent in |z| < 1/2.

5 Extremal property of $f_0(z) = -z - 2\log(1-z)$

Theorem 5.1 Suppose 0 < r < 1. The area of the image of |z| < r for mappings in \mathcal{H} is maximal for $f_0(z) = -z - 2\log(1-z)$.

Proof Suppose that $f = h + \overline{g} \in \mathcal{H}$ and 0 < r < 1. Then $h \in \mathcal{R}$. Let $A_r(f)$ (resp. $A_r(h), A_r(f_0)$) be the image of |z| < r under f (resp. h, f_0). By using [7, Theorem 5], it follows that

$$\begin{aligned} A_r(f) &= \int \int_{\mathbb{D}} J_f(z) dx dy = \int \int_{\mathbb{D}} (|h'(z)|^2 - |g'(z)|^2) dx dy \\ &\leq \int \int_{\mathbb{D}} |h'(z)|^2 dx dy \\ &= A_r(h) \\ &\leq A_r(f_0). \end{aligned}$$

The proof of this theorem is complete.

6 Mappings with initial zero coefficients

Some of the results obtained for mappings in \mathcal{H} can be improved if f has the form

$$f(z) = z + \sum_{k=n}^{\infty} a_k z^k + \sum_{k=n}^{\infty} \overline{b_k} \overline{z^k}.$$

By using [7, Theorem 6], similar to Theorem 2.1, we obtain the following theorem.

Theorem 6.1 Suppose that $f(z) = h(z) + \overline{g(z)} = z + \sum_{k=n}^{\infty} a_k z^k + \sum_{k=n}^{\infty} \overline{b_k} \overline{z}^k \in \mathcal{H}$. Then

$$|h'(z)| + |g'(z)| \le \frac{1+|z|^{k-1}}{1-|z|^{k-1}}, \ Reh'(z) \ge \frac{1-|z|^{k-1}}{1+|z|^{k-1}} + |g'(z)|,$$

and

$$\int_{0}^{|z|} \frac{1 - t^{k-1}}{1 + t^{k-1}} dt \le ||h(z)| - |g(z)|| \le |h(z)| + |g(z)| \le \int_{0}^{|z|} \frac{1 + t^{k-1}}{1 - t^{k-1}} dt.$$

Corollary 6.2 Suppose that $f = h + \overline{g} \in \mathcal{H}$, and h''(0) = g''(0) = 0. Then the image domain covers the disc $|\omega| < (\pi/2) - 1$.

By using similar arguments as that of Theorem 5.1 and [7, Theorem 7], we have the following theorem.

Theorem 6.3 Suppose that 0 < r < 1, $f_k(z) = \int_0^3 (1 + t^{k-1})/(1 - t^{k-1})dt$. The area of the image of |z| < r for mappings $f(z) = h(z) + \overline{g(z)} = z + \sum_{k=n}^{\infty} a_k z^k + \sum_{k=n}^{\infty} \overline{b_k} \overline{z}^k$ in \mathcal{H} is maximal for f_k .

ACKNOWLEDGEMENTS. This paper was supported by National Natural Science Foundation of China (No. 11501159).

References

- [1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. 17 (1915), 12-22.
- [2] S. V. Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univalent mappings and hypergeometric mappings, Rocky Mountain J. Math. 44(3) (2014),753-777.
- [3] P. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1982.
- [4] P. Duren, Harmonic mappings in the plane, Cambridge Univ. Press, 2004.
- [5] D. Kalaj, S. Ponnusamy and M. Vuorinen, Radius of close-to-convexity and fully starlikeness of harmonic mappings, Complex Var. Elliptic Euq. 59(4) (2014), 539-552.
- [6] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.
- [7] Thomas H. Macgregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537.
- [8] K. Noshiro, On the theory of schlicht functions, J. Fac. Sei. Hokkaido Univ. 2(1) (1934-1935), 129-155.
- [9] S. Ponnusamy, H. Yamamoto and H. Yanagihara, Variability regions for certain families of harmonic univalent mappings, Complex Var. Elliptic Equ. 58(1) (2013), 23-34.
- [10] G. Szegö, Zur Theorie der Schlicht Abbildungen, Math. Ann. 100 (1928), 188-211.
- [11] S. R. Tims, A theorem on functions schlicht in convex domains, Proc. London Math. Soc. 1 (3) (1951), 200-205.
- [12] S. Warschawski, On the higher derivatives at the boundary in conformal mappings, Trans. Amer. Math. Soc. 38 (1935), 310-340.
- [13] J. Wolff, L'intgrale d'une function holomorphe et partie relle positive dans un demiplan est univalente, C. R. Acad. Sei. Paris 198 (1934), 1209-1210.

Received: August 24, 2016