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Abstract

The main aim of this paper is to investigate a class of univalent
harmonic mappings, which is the generalization of the class of analytic
functions whose derivative has a positive real part. The distortion theo-
rem, the radius of convexity, univalence of the partial sums, the extremal
property of f0(z) = −z − 2 log(1 − z), and functions with initial zero
coefficients are considered.
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1 Introduction

Assume that f = u+ iv is a complex-valued harmonic function defined in the
unit disk D = {z ∈ C : |z| < 1}, i.e. u and v are real harmonic in D. Then
f admits the decomposition f = h + g, where h and g are analytic in D, see
[4]. Often h and g are referred to as the analytic and co-analytic parts of f ,
respectively. If in addition f is univalent in D, then f has a non-vanishing
Jacobian in D, where the Jacobian of f is given by

Jf(z) = |fz(z)|2 − |fz̄(z)|2 = |h′(z)|2 − |g′(z)|2.

We say that f is sense-preserving in D if Jf(z) > 0 in D. Moreover, the converse
is also true, see [6]. If f is sense preserving, then the complex dilatation
ω := g′/h′ is analytic in D and maps D into D.
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The condition Ref ′(z) > 0 is known to be sufficient for the univalence
of an analytic function f in any convex domain, see [3, Theorem 2.16]. An
early consideration of functions satisfying the condition Ref ′(z) > 0 can be
found in the paper by Alexander [1]. He proves: if f is analytic in D and f ′

“maps D upon a region contained within a half-plane bounded by a straight
line through the origin”, then f is univalent. Wolff [13] showed that f is uni-
valent in Rez > 0 if it is analytic there and satisfies Ref ′(z) > 0. Noshiro
[8, P151] and Warschawski [12, P312] each demonstrated that Ref ′(z) > 0 is a
sufficient condition for the univalence of f in any convex domain. Conversely,
Tims [11] proved that for each simply connected nonconvex domain D there
is a function f analytic in D such that Ref ′(z) > 0 and f is not univalent in
D. A more general class of functions than those satisfying Ref ′(z) > 0 is the
class of close-to-convex functions, which is univalent and the range is close-
to-convex, see, for example, [3]. Let R denote the class of analytic functions
which satisfies Ref ′(z) > 0 in D and is normalized by f(0) = 0 and f ′(0) = 1.
Because of Alexander’s result each function in R is univalent, see [1]. In [7],
author continued to investigate functions in R, and considered distortion the-
orems, the radius of convexity, univalence of the partial sums, further extremal
properties of f0(z) = −z − 2 log(1 − z), and functions with initial zero coeffi-
cients. The aim of this paper is to generalize the results in [7] to the case of
harmonic mappings.

A natural generalization of the class R to the case of harmonic mappings
is the class H of harmonic mappings f = h + g, defined by the condition
Reh′(z) > |g′(z)| and satisfied h(0) = h′(0)− 1 = 0, g(0) = g′(0) = 0. Clearly,
if f = h+ g ∈ H, then h ∈ R and h+ eiθg ∈ R for each θ ∈ [0, 2π). This fact
plays an important role in the proof of our main results. Harmonic mappings
in H have many interesting properties see [2, 5, 9]. In particular, the authors
[9] have shown that f ∈ H is indeed close to convex in D.

In this paper, we continue to consider the harmonic mappings in H, and
generalize the properties of functions in R to the case of harmonic map-
pings in H. By using different methods, we discuss the distortion theorem,
the radius of convexity, univalence of the partial sums, extremal property of
f0(z) = −z − 2 log(1 − z), and functions with initial zero coefficients, which
are generalizations of the corresponding results in [7] to the case of harmonic
mappings.

2 Distortion theorem

In [9], the following result has been proved.
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Theorem A Suppose that f = h + g, where h(z) = z +
∑∞

k=2
akz

k and
g(z) =

∑∞
k=2

bkz
k in a neighborhood of the origin and |b1| < 1. If

∞∑
k=2

k|ak|+
∞∑
k=2

k|bk| ≤ 1,

then f ∈ H.

In fact, we have the following sharp estimate of coefficients for f ∈ H.

Theorem 2.1 If f(z) = h(z) + g(z) = z +
∑∞

k=2
akz

k +
∑∞

k=2
bkz

k ∈ H,

then

|ak|+ |bk| ≤
2

k
for k = 2, 3, · · · , |h′(z)|+ |g′(z)| ≤ 1 + |z|

1− |z| ,

Re(h′(z)) ≥ 1− |z|
1 + |z| + |g′(z)|

−|z|+ 2 log(1 + |z|) ≤ ||h(z)| − |g(z)|| ≤ |h(z)|+ |g(z)| ≤ −|z| − 2 log(1− |z|).
(1)

Since for f = h + g ∈ H, h + eiθg ∈ R for each θ ∈ [0, 2π), that is
Re(h′(z) + eiθg′(z)) > 0 in D. By using [7, Theorem 1], Theorem 2.1 follows.

Let f0(z) = −z − 2 log(1 − z) = z +
∑∞

n=2
(2/n)zn. By considering f0, we

can verify that all estimates of this theorem are sharp. The next results follows
from estimate (1).

Corollary 2.2 Each mapping in H maps D onto a domain which covers

the disc |ω| < 2 log 2− 1.

3 The radius of convexity

We begin this section with the following lemma.

Lemma 3.1 ([4, P38, Theorem]) Let f = h + g be harmonic and locally

univalent in D. Then f is univalent and its range is convex if and only if for

each choice of α (0 ≤ α < 2π), the analytic function eiαh− e−iαg is univalent

and its range is convex in the horizontal direction.

Theorem 3.2 Each mapping in H maps |z| <
√
2 − 1 onto a convex do-

main.
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Proof Suppose that f = h+ g ∈ H. Let

fr(z) =
1

r
(h(rz) + g(rz)) = hr(z) + gr(z) and fθ(z) = h(z) + eiθg(z)

for 0 < r < 1. Then fr ∈ H, fθ ∈ R. For the function fθ, 1
2

(z) := 2fθ(
1

2
z) =

h 1

2

(z)+eiθg 1

2

(z), by using [7, Theorem 2] shows that fθ, 1
2

maps D onto a convex

domain. Then for each α ∈ [0, 2π) and θ = π − 2α,

eiαfθ, 1
2

(z) = eiαh 1

2

(z) + eiαeiπ−2iαg 1

2

(z) = eiαh 1

2

(z)− e−iαg 1

2

(z)

maps D onto a convex domain, it follows from Lemma 3.1 that f 1

2

is convex,

which implies that f maps |z| < 1/2 onto a convex domain.
For the function f0(z) = −z − 2 log(1 − z), we have [zf ′′

0
(z)/f ′

0
(z) + 1] =

(1+2z− z2)/(1− z2) and this last expression vanishes for z =
√
2− 1. Hence,

this function maps no circle |z| < r larger than |z| <
√
2 − 1 onto a convex

domain.

4 Univalence of the partial sums

It is interesting to determine to what extent a given property of a power series
is carried over to its partial sums. Szegö [10] has shown that all of the partial
sums of a function univalent in D are univalent in |z| < 1/4. For mappings
in R, authors [7] proved that the constant 1/4 can be improved to 1/2. We
generalize this result to the case of harmonic mappings.

Theorem 4.1 Let f(z) = h(z) + g(z) = z +
∑∞

k=2
akz

k +
∑∞

k=2
bkz

k ∈ H.

Then fn(z) = hn(z) + gn(z) = z +
∑n

k=2
akz

k +
∑n

k=2
bkz

k is univalent in

|z| < 1/2 for n = 2, 3, · · ·.

Proof Since f = h + g ∈ H, it follows that fθ = h + eiθg ∈ R. From the
proof of [7, Theorem 4], we obtain that Re(h′

n(z) + eiθg′n(z)) > 0 in |z| < 1/2,
which implies that Reh′

n(z) > |g′n(z)| in |z| < 1/2, and then fn is univalent in
|z| < 1/2.

5 Extremal property of f0(z) = −z − 2 log(1− z)

Theorem 5.1 Suppose 0 < r < 1. The area of the image of |z| < r for

mappings in H is maximal for f0(z) = −z − 2 log(1− z).
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Proof Suppose that f = h + g ∈ H and 0 < r < 1. Then h ∈ R. Let
Ar(f) (resp. Ar(h), Ar(f0)) be the image of |z| < r under f (resp. h, f0). By
using [7, Theorem 5], it follows that

Ar(f) =

∫ ∫
D

Jf(z)dxdy =

∫ ∫
D

(|h′(z)|2 − |g′(z)|2)dxdy

≤
∫ ∫

D

|h′(z)|2dxdy

= Ar(h)

≤ Ar(f0).

The proof of this theorem is complete.

6 Mappings with initial zero coefficients

Some of the results obtained for mappings in H can be improved if f has the
form

f(z) = z +
∞∑
k=n

akz
k +

∞∑
k=n

bkz
k.

By using [7, Theorem 6], similar to Theorem 2.1, we obtain the following
theorem.

Theorem 6.1 Suppose that f(z) = h(z)+g(z) = z+
∑∞

k=n akz
k+

∑∞
k=n bkz

k ∈
H. Then

|h′(z)|+ |g′(z)| ≤ 1 + |z|k−1

1− |z|k−1
, Reh′(z) ≥ 1− |z|k−1

1 + |z|k−1
+ |g′(z)|,

and ∫ |z|

0

1− tk−1

1 + tk−1
dt ≤ ||h(z)| − |g(z)|| ≤ |h(z)|+ |g(z)| ≤

∫ |z|

0

1 + tk−1

1− tk−1
dt.

Corollary 6.2 Suppose that f = h + g ∈ H, and h′′(0) = g′′(0) = 0. Then

the image domain covers the disc |ω| < (π/2)− 1.

By using similar arguments as that of Theorem 5.1 and [7, Theorem 7], we
have the following theorem.

Theorem 6.3 Suppose that 0 < r < 1, fk(z) =
∫
3

0
(1 + tk−1)/(1 − tk−1)dt.

The area of the image of |z| < r for mappings f(z) = h(z) + g(z) = z +∑∞
k=n akz

k +
∑∞

k=n bkz
k in H is maximal for fk.
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