Almost contra semi generalized star b continuous functions in Topological Spaces

S. Sekar

Department of Mathematics, Government Arts College (Autonomous), Salem – 636 007, Tamil Nadu, India. E-Mail: sekar_nitt@rediffmail.com

B. Jothilakshmi

Department of Mathematics, Government Arts College (Autonomous), Coimbatore – 641 045, Tamil Nadu, India. E-Mail: balujothi87@gmail.com

Abstract

In this paper, the authors introduce a new class of functions called almost contra semi generalized star b - continuous function (briefly almost contra sg^*b -continuous) in topological spaces. Some characterizations and several properties concerning almost contra sg^*b continuous functions are obtained.

Mathematics Subject Classification: 54C05, 54C08, 54C10.

Keywords: sg^*b -closed sets; sg^*b -closed map; sg^*b -continuous map; contra sg^*b -continuity.

1 Introduction

In 2002, Jafari and Noiri introduced and studied a new form of functions called contra-pre continuous functions. The purpose of this paper is to introduce and study almost contra sg^*b -continuous functions via the concept of sg^*b -closed sets. Also, properties of almost contra sg^*b -continuity are discussed. Moreover, we obtain basic properties and preservation theorems of almost contra sg^*b continuous functions and relationships between almost contra sg^*b -continuity and sg^*b -regular graphs. Through out this paper (X, τ) and (Y, σ) represent the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. Let $A \subseteq X$, the closure of A and interior of A will be denoted by cl(A) and int(A) respectively, union of all sg^*b -open sets X contained in A is called sg^*b -interior of A and it is denoted by $sg^*bint(A)$, the intersection of all sg^*b -closed sets of X containing A is called sg^*b -closure of A and it is denoted by $sg^*bcl(A)$ [5].

2 Preliminaries

Definition 2.1. Let a subset A of a topological space (X, τ) , is called 1) a pre-open set [9] if $A \subseteq int(cl(A))$.

2) a semi-open set [7] if $A \subseteq cl(int(A))$.

3) a α -open set [9] if $A \subseteq int(cl(int(A)))$. 4) a α generalized closed set (briefly αg - closed) [8] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

5) a generalized * closed set (briefly g^* -closed)[14] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} open in X.

6) a generalized b- closed set (briefly gb- closed) [1] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

7) a generalized semi-pre closed set (briefly gsp - closed) [3] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

8) a semi generalized closed set (briefly sg- closed) [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.

9) a generalized pre regular closed set (briefly gpr-closed) [5] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

10) a semi generalized b- closed set (briefly sgb- closed) [6] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.

11) a \ddot{g} - closed set [12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg open in X. 12) a semi generalized star b - closed set (briefly sg^*b - closed)[13] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg open in X.

Definition 2.2. A function $f: (X, \tau) \to (Y, \sigma)$, is called

1) almost contra continuous [1] if $f^{-1}(V)$ is closed in (X, τ) for every regularopen set V of (Y, σ) .

2) almost contra α -continuous [11] if $f^{-1}(V)$ is b-closed in (X, τ) for every regular-open set V of (Y, σ) .

3) almost contra pre-continuous [4] if $f^{-1}(V)$ is pre-closed in (X, τ) for every regular-open set V of (Y, σ) .

4) almost contra semi-continuous [6] if $f^{-1}(V)$ is semi-closed in (X, τ) for every regular-open set V of (Y, σ) .

5) almost contra gb-continuous [10] if $f^{-1}(V)$ is gb-closed in (X, τ) for every regular-open set V of (Y, σ) .

3 Almost contra semi generalized star *b* - Continuous functions

In this section, we introduce almost contra semi generalized star b - continuous functions and investigate some of their properties.

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called almost contra semi generalized star b - continuous if $f^{-1}(V)$ is sg^*b - closed in (X, τ) for every regular open set V in (Y, σ) .

Example 3.2. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Clearly f is almost contra sg^*b - continuous.

Theorem 3.3. If $f : X \to Y$ is contra sg^*b - continuous then it is almost contra sg^*b - continuous.

Proof. Obvious, because every regular open set is open set.

Remark 3.4. Converse of the above theorem need not be true in general as seen from the following example.

Example 3.5. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{c\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Then f is almost contra sg^*b - continuous function but not contra sg^*b - continuous, because for the open set $\{a\}$ in Y and $f^{-1}\{a\} = \{c\}$ is not sg^*b - closed in X.

Theorem 3.6. 1) Every almost contra pre - continuous function is almost contra sg^*b - continuous function.

2) Every almost contra semi continuous function is almost contra sg^*b - continuous function.

3) Every almost contra α - continuous function is almost contra sg^*b - continuous function.

4) Every almost contra αg - continuous function is almost contra sg^*b - continuous function.

5) Every almost contra sg^*b - continuous function is almost contra gsp - continuous function.

6) Every almost contra sg^*b - continuous function is almost contra gb - continuous function.

7) Every almost contra sg - continuous function is almost contra sg^*b - continuous function.

Remark 3.7. Converse of the above statements is not true as shown in the following example.

856

Example 3.8. i) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{c\}, \{a, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Clearly f is almost contra sg^*b - continuous but f is not almost contra pre - continuous. Because $f^{-1}(\{c\}) = \{b\}$ is not pre closed in (X, τ) where $\{c\}$ is regular - open in (Y, σ) .

ii) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = a, f(c) = b. Clearly f is almost contra sg^{*}b - continuous but f is not almost contra semi - continuous. Because $f^{-1}(\{a\}) = \{b\}$ is not semi - closed in (X, τ) where $\{a\}$ is regular - open in (Y, σ) .

iii) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Clearly f is almost contras g^*b - continuous but f is not almost contra α - continuous. Because $f^{-1}(\{a, c\}) = \{b, c\}$ is not α - closed in (X, τ) where $\{a, c\}$ is regular - open in (Y, σ) .

iv) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = a, f(c) = b. Clearly f is almost contra sg^*b - continuous but f is not almost contra αg - continuous. Because $f^{-1}(\{a\}) = \{b\}$ is not αg - closed in (X, τ) where $\{a\}$ is regular - open in (Y, σ) .

v) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{a, c\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Clearly f is almost contra gsp - continuous but f is not almost contra sg^*b - continuous. Because $f^{-1}(\{b, c\}) = \{a, b\}$ is not sg^*b - closed in (X, τ) where $\{b, c\}$ is regular - open in (Y, σ) .

vi) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Clearly f is almost contra gb - continuous but f is not almost contra sg^*b - continuous. Because $f^{-1}(\{b, c\}) = \{a, c\}$ is not sg^*b - closed in (X, τ) where $\{b, c\}$ is regular - open in (Y, σ) .

vii) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Clearly f is almost contra sg^*b - continuous but f is not almost contra sg - continuous. Because $f^{-1}(\{a, b\}) = \{a, b\}$ is not sg - closed in (X, τ) where $\{a, b\}$ is regular - open in (Y, σ) .

Remark 3.9. The concept of almost contra sg*b-continuous and almost contra sgb -continuous are independent as shown in the following examples.

Example 3.10. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = b, f(c) = a. Clearly f is almost contra sg^*b - continuous but f is not almost contra sgb - continuous. Because $f^{-1}(\{b, c\}) = \{a, b\}$ is not sgb - closed in (X, τ) where $\{b, c\}$ is regular - open in (Y, σ) .

Example 3.11. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$ and $\sigma = \{Y, \varphi, \{b\}, \{c\}, \{b, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = a, f(c) = b. Clearly f is almost contra sgb - continuous but f is not almost contra sg*b - continuous. Because $f^{-1}(\{b\}) = \{c\}$ is not sg*b - closed in (X, τ) where $\{b\}$ is regular - open in (Y, σ) .

Theorem 3.12. The following are equivalent for a function $f : X \to Y$, (1) f is almost contra sg^*b - continuous.

(2) for every regular closed set F of Y, $f^{-1}(F)$ is sg^*b - open set of X.

(3) for each $x \in X$ and each regular closed set F of Y containing f(x), there exists sg^*b - open U containing x such that $f(U) \subset F$.

(4) for each $x \in X$ and each regular open set V of Y not containing f(x), there exists sg^*b - closed set K not containing x such that $f^{-1}(V) \subset K$.

Proof. (1) \Rightarrow (2) : Let F be a regular closed set in Y, then Y - F is a regular open set in Y. By (1), $f^{-1}(Y - F) = X - f^{-1}(F)$ is sg^*b - closed set in X. This implies $f^{-1}(F)$ is sg^*b - open set in X. Therefore, (2) holds.

 $(2) \Rightarrow (1)$: Let G be a regular open set of Y. Then Y-G is a regular closed set in Y. By (2), $f^{-1}(Y-G)$ is sg^*b - open set in X. This implies $X - f^{-1}(G)$ is sg^*b - open set in X, which implies $f^{-1}(G)$ is sg^*b - closed set in X. Therefore, (1) hold.

 $(2) \Rightarrow (3)$: Let F be a regular closed set in Y containing f(x), which implies $x \in f^{-1}(F)$. By (2), $f^{-1}(F)$ is sg^*b - open in X containing x. Set $U = f^{-1}(F)$, which implies U is sg^*b - open in X containing x and $f(U) = f(f^{-1}(F)) \subset F$. Therefore (3) holds.

 $(3) \Rightarrow (2)$: Let F be a regular closed set in Y containing f(x), which implies $x \in f^{-1}(F)$. From (3), there exists sg^*b - open U_x in X containing x such that $f(U_x) \subset F$. That is $U_x \subset f^{-1}(F)$. Thus $f^{-1}(F) = \{ \cup U_x : x \in f^{-1}(F), \text{ which} \text{ is union of } sg^*b$ - open sets. Therefore, $f^{-1}(F)$ is sg^*b - open set of X.

 $(3) \Rightarrow (4)$: Let V be a regular open set in Y not containing f(x). Then Y - V is a regular closed set in Y containing f(x). From (3), there exists a sg^*b - open set U in X containing x such that $f(U) \subset Y - V$. This implies $U \subset f^{-1}(Y - V) = X - f^{-1}(V)$. Hence, $f^{-1}(V) \subset X - U$. Set K = X - V, then K is sg^*b - closed set not containing x in X such that $f^{-1}(V) \subset K$.

 $(4) \Rightarrow (3)$: Let F be a regular closed set in Y containing f(x). Then Y - Fis a regular open set in Y not containing f(x). From (4), there exists sg^*b - closed set K in X not containing x such that $f^{-1}(Y - F) \subset K$. This implies $X - f^{-1}(F) \subset K$. Hence, $X - K \subset f^{-1}(F)$, that is $f(X - K) \subset F$. Set U = X - K, then U is sg^*b - open set containing x in X such that $f(U) \subset F$.

Theorem 3.13. The following are equivalent for a function $f : X \to Y$, (1) f is almost contra sg^*b - continuous.

S. Sekar and B. Jothilakshmi

(2) $f^{-1}(Int(Cl(G)))$ is sg^*b - closed set in X for every open subset G of Y. (3) $f^{-1}(Cl(Int(F)))$ is sg^*b - open set in X for every closed subset F of Y.

Proof. (1) \Rightarrow (2) : Let G be an open set in Y. Then Int(Cl(G)) is regular open set in Y. By (1), $f^{-1}(Int(Cl(G)) \in sg^*b - C(X))$. (2) \Rightarrow (1) : Proof is obvious.

 $(1) \Rightarrow (3)$: Let F be a closed set in Y. Then Cl(Int(G)) is regular closed set in Y. By (1), $f^{-1}(Cl(Int(G)) \in sg^*b - O(X)$. (3) $\Rightarrow (1)$: Proof is obvious.

Definition 3.14. A function $f : X \to Y$ is said to be R - map if $f^{-1}(V)$ is regular open in X for each regular open set V of Y.

Definition 3.15. A function $f : X \to Y$ is said to be perfectly continuous if $f^{-1}(V)$ is clopen in X for each open set V of Y.

Theorem 3.16. For two functions $f : X \to Y$ and $g : Y \to Z$, let $g \circ f : X \to Z$ be a composition function. Then, the following properties hold.

(1) If f is almost contra sg^*b - continuous and g is an R - map, then $g \circ f$ is almost contra sg^*b - continuous.

(2) If f is almost contra sg^*b - continuous and g is perfectly continuous, then $g \circ f$ is contra sg^*b - continuous.

(3) If f is contra sg^*b - continuous and g is almost continuous, then $g \circ f$ is almost contra sg^*b - continuous.

Proof. (1) Let V be any regular open set in Z. Since g is an R - map, $g^{-1}(V)$ is regular open in Y. Since f is almost contra sg^*b - continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is sg^*b - closed set in X. Therefore $g \circ f$ is almost contra sg^*b - continuous.

(2) Let V be any regular open set in Z. Since g is perfectly continuous, $g^{-1}(V)$ is clopen in Y. Since f is almost contra sg^*b - continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is sg^*b - open and sg^*b - closed set in X. Therefore $g \circ f$ is sg^*b continuous and contra sg^*b - continuous.

(3) Let V be any regular open set in Z. Since g is almost continuous, $g^{-1}(V)$ is open in Y. Since f is almost contra sg^*b - continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is sg^*b - closed set in X. Therefore $g \circ f$ is almost contra sg^*b - continuous.

Theorem 3.17. Let $f : X \to Y$ be a contra sg^*b - continuous and $g : Y \to Z$ be sg^*b - continuous. If Y is Tsg^*b - space, then $g \circ f : X \to Z$ is an almost contra sg^*b - continuous.

Proof. Let V be any regular open and hence open set in Z. Since g is sg^*b continuous $g^{-1}(V)$ is sg^*b - open in Y and Y is Tsg^*b - space implies $g^{-1}(V)$ open in Y. Since f is contra sg^*b - continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is sg^*b - closed set in X. Therefore, $g \circ f$ is an almost contra sg^*b - continuous. \Box

Theorem 3.18. If $f : X \to Y$ is surjective strongly sg^*b - open (or strongly sg^*b - closed) and $g : Y \to Z$ is a function such that $g \circ f : X \to Z$ is an almost contra sg^*b - continuous, then g is an almost contra sg^*b - continuous.

Proof. Let V be any regular closed (resp. regular open) set in Z. Since $g \circ f$ is an almost contra sg^*b - continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is sg^*b - open (resp. sg^*b - closed) in X. Since f is surjective and strongly sg^*b - open (or strongly sg^*b - closed), $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is sg^*b - open (or sg^*b - closed). Therefore g is an almost contra sg^*b - continuous. \Box

Definition 3.19. A function $f: X \to Y$ is called weakly sg^*b - continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in sg^*b - O(X; x)$ such that $f(U) \subset cl(V)$.

Theorem 3.20. If a function $f : X \to Y$ is an almost contra sg^*b - continuous, then f is weakly sg^*b - continuous function.

Proof. Let $x \in X$ and V be an open set in Y containing f(x). Then cl(V) is regular closed in Y containing f(x). Since f is an almost contra sg^*b - continuous function by Theorem 3 (2), $f^{-1}(cl(V))$ is sg^*b - open set in X containing x. Set $U = f^{-1}(cl(V))$, then $f(U) \subset f(f^{-1}(Cl(V))) \subset cl(V)$. This shows that f is weakly sg^*b - continuous function. \Box

Definition 3.21. A space X is called locally sg^*b - indiscrete if every sg^*b - open set is closed in X.

Theorem 3.22. If a function $f : X \to Y$ is almost contras g^*b - continuous and X is locally sg^*b - indiscrete space, then f is almost continuous.

Proof. Let U be a regular open set in Y. Since f is almost contra sg^*b - continuous $f^{-1}(U)$ is sg^*b - closed set in X and X is locally sg^*b - indiscrete space, which implies $f^{-1}(U)$ is an open set in X. Therefore f is almost continuous.

Lemma 3.23. Let A and X_0 be subsets of a space X. If $A \in sg^*b - O(X)$ and $X_0 \in \tau^{\alpha}$, then $A \cap X_0 \in sg^*b - O(X_0)$.

Theorem 3.24. If $f : X \to Y$ is almost contrarget g^*b - continuous and $X_0 \in \tau^{\alpha}$ then the restriction $f/X_0 : X_0 \to Y$ is almost contrarget g^*b - continuous.

Proof. Let V be any regular open set of Y. By Theorem, we have $f^{-1}(V) \in sg^*b - O(X)$ and hence $(f/X_0)^{-1}(V) = f^{-1}(V) \cap X_0 \in sg^*b - O(X_0)$. By Lemma 1, it follows that f/X_0 is almost contra sg^*b - continuous.

Theorem 3.25. If $f : X \to \prod Y_{\lambda}$ is almost contra sg^*b - continuous, then $P_{\lambda} \circ f : X \to Y_{\lambda}$ is almost contra sg^*b - continuous for each $\lambda \in \nabla$, where P_{λ} is the projection of $\prod Y_{\lambda}$ onto Y_{λ} .

Proof. Let Y_{λ} be any regular open set of Y. Since P_{λ} is continuous open, it is an R - map and hence $(P_{\lambda})^{-1} \in RO(\prod Y_{\lambda})$. By theorem, $f^{-1}(P_{\lambda}^{-1}(V)) = (P_{\lambda} \circ f)^{-1} \in sg^*b - O(X)$. Hence $P_{\lambda} \circ f$ is almost contra sg^*b - continuous.

4 Semi generalized star *b* - regular graphs and strongly contra semi generalized star *b* - closed graphs

Definition 4.1. A graph G_f of a function $f : X \to Y$ is said to be sg^*b regular (strongly contra sg^*b - closed) if for each $(x, y) \in (X \times Y) \setminus G_f$, there exist a sg^*b - closed set U in X containing x and $V \in R - O(Y)$ such that $(U \times V) \cap G_f = \varphi$.

Theorem 4.2. If $f : X \to Y$ is almost contra sg^*b - continuous and Y is T_2 , then G_f is sg^*b - regular in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) \setminus G_f$. It is obvious that $f(x) \neq y$. Since Y is T_2 , there exists $V, W \in RO(Y)$ such that $f(x) \in V, y \in W$ and $V \cap W = \varphi$. Since f is almost contra sg^*b - continuous, $f^{-1}(V)$ is a sg^*b - closed set in X containing x. If we take $U = f^{-1}(V)$, we have $f(U) \subset V$. Hence, $f(U) \cap W = \varphi$ and G_f is sg^*b - regular. \Box

Theorem 4.3. Let $f : (X, \tau) \to (Y, \sigma)$ be a function and $g : (X, \tau) \to (X \times Y, \tau \times \sigma)$ the graph function defined by g(x) = (x, f(x)) for every $x \in X$. Then f is almost sg^*b - continuous if and only if g is almost sg^*b - continuous.

Proof. Necessary : Let $x \in X$ and $V \in sg^*b - O(Y)$ containing f(x). Then, we have $g(x) = (x, f(x)) \in R - O(X \times Y)$. Since f is almost sg^*b - continuous, there exists a sg^*b - open set U of X containing x such that $g(U) \subset X \times Y$. Therefore, we obtain $f(U) \subset V$. Hence f is almost sg^*b continuous.

Sufficiency: Let $x \in X$ and w be a regular open set of $X \times Y$ containing g(x). There exists $U_1 \in RO(X, \tau)$ and $V \in RO(Y, \sigma)$ such that $(x, f(x)) \in (U_1 \times V) \subset W$. Since f is almost sg^*b - continuous, there exists $U_2 \in sg^*b - O(X, \tau)$ such that $x \in U_2$ and $f(U_2) \subset V$. Set $U = U_1 \cap U_2$. We have $x \in U_x \in sg^*b - O(X, \tau)$ and $g(U) \subset (U_1 \times V) \subset W$. This shows that g is almost sg^*b - continuous.

Theorem 4.4. If a function $f : X \to Y$ be a almost contra sg^*b - continuous and almost continuous, then f is regular set - connected.

Proof. Let $V \in RO(Y)$. Since f is almost contra sg^*b - continuous and almost continuous, $f^{-1}(V)$ is sg^*b - closed and open. So $f^{-1}(V)$ is clopen. It turns out that f is regular set - connected.

5 Connectedness

Definition 5.1. A space X is called sg^*b - connected if X cannot be written as a disjoint union of two non - empty sg^*b - open sets.

Theorem 5.2. If $f : X \to Y$ is an almost contra sg^*b - continuous surjection and X is sg^*b - connected, then Y is connected.

Proof. Suppose that Y is not a connected space. Then Y can be written as $Y = U_0 \cup V_0$ such that U_0 and V_0 are disjoint non - empty open sets. Let $U = int(cl(U_0))$ and $V = int(cl(V_0))$. Then U and V are disjoint nonempty regular open sets such that $Y = U \cup V$. Since f is almost contra sg^*b - continuous, then $f^{-1}(U)$ and $f^{-1}(V)$ are sg^*b - open sets of X. We have $X = f^{-1}(U) \cup f^{-1}(V)$ such that $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint. Since f is surjective, this shows that X is not sg^*b - connected. Hence Y is connected. \Box

Theorem 5.3. The almost contra sg^*b - continuous image of sg^*b - connected space is connected.

Proof. Let $f : X \to Y$ be an almost contra sg^*b - continuous function of a sg^*b - connected space X onto a topological space Y. Suppose that Y is not a connected space. There exist non - empty disjoint open sets V_1 and V_2 such that $Y = V_1 \cup V_2$. Therefore, V_1 and V_2 are clopen in Y. Since f is almost contra sg^*b - continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are sg^*b - open in X. Moreover, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are non - empty disjoint and $X = f^{-1}(V_1) \cup f^{-1}(V_2)$. This shows that X is not sg^*b - connected. \Box

Definition 5.4. A topological space X is said to be sg^*b - ultra connected if every two non - empty sg^*b - closed subsets of X intersect.

A topological space X is said to be hyper connected if every open set is dense.

Theorem 5.5. If X is sg^*b - ultra connected and $f : X \to Y$ is an almost contra sg^*b - continuous surjection, then Y is hyper connected.

Proof. Suppose that Y is not hyperconnected. Then, there exists an open set V such that V is not dense in Y. So, there exist non - empty regular open subsets $B_1 = int(cl(V))$ and $B_2 = Y - cl(V)$ in Y. Since f is almost contra sg^*b - continuous, $f^{-1}(B_1)$ and $f^{-1}(B_2)$ are disjoint sg^*b - closed. This is contrary to the sg^*b - ultra - connectedness of X. Therefore, Y is hyperconnected. \Box

6 Separation axioms

Definition 6.1. A topological space X is said to be $sg^*b - T_1$ space if for any pair of distinct points x and y, there exist a sg^*b - open sets G and H such that $x \in G$, $y \notin G$ and $x \notin H$, $y \in H$.

Theorem 6.2. If $f : X \to Y$ is an almost contra sg^*b - continuous injection and Y is weakly Hausdorff, then X is $sg^*b - T_1$.

Proof. Suppose Y is weakly Hausdorff. For any distinct points x and y in X, there exist V and W regular closed sets in Y such that $f(x) \in V$, $f(y) \notin V$, $f(y) \in W$ and $f(x) \notin W$. Since f is almost contra sg^*b - continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are sg^*b - open subsets of X such that $x \in f^{-1}(V), y \notin f^{-1}(V),$ $y \in f^{-1}(W)$ and $x \notin f^{-1}(W)$. This shows that X is $sg^*b - T_1$.

Corollary 6.3. If $f : X \to Y$ is a contra sg^*b - continuous injection and Y is weakly Hausdorff, then X is $sg^*b - T_1$.

Definition 6.4. A topological space X is called Ultra Hausdorff space, if for every pair of distinct points x and y in X, there exist disjoint clopen sets U and V in X containing x and y, respectively.

Definition 6.5. A topological space X is said to be $sg^*b - T_2$ space if for any pair of distinct points x and y, there exist disjoint sg^*b - open sets G and H such that $x \in G$ and $y \in H$.

Theorem 6.6. If $f : X \to Y$ is an almost contra sg^*b - continuous injective function from space X into a Ultra Hausdorff space Y, then X is $sg^*b - T_2$.

Proof. Let x and y be any two distinct points in X. Since f is an injective $f(x) \neq f(y)$ and Y is Ultra Hausdorff space, there exist disjoint clopen sets U and V of Y containing f(x) and f(y) respectively. Then $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$, where $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint sg^*b - open sets in X. Therefore X is $sg^*b - T_2$.

Definition 6.7. A topological space X is called Ultra normal space, if each pair of disjoint closed sets can be separated by disjoint clopen sets.

Definition 6.8. A topological space X is said to be sg^*b - normal if each pair of disjoint closed sets can be separated by disjoint sg^*b - open sets.

Theorem 6.9. If $f : X \to Y$ is an almost contra sg^*b - continuous closed injection and Y is ultra normal, then X is sg^*b - normal.

Proof. Let E and F be disjoint closed subsets of X. Since f is closed and injective f(E) and f(F) are disjoint closed sets in Y. Since Y is ultra normal there exists disjoint clopen sets U and V in Y such that $f(E) \subset U$ and $f(F) \subset V$. This implies $E \subset f^{-1}(U)$ and $F \subset f^{-1}(V)$. Since f is an almost contra sg^*b - continuous injection, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint sg^*b - open sets in X. This shows X is sg^*b - normal.

Theorem 6.10. If $f : X \to Y$ is an almost contra sg^*b - continuous and Y is semi - regular, then f is sg^*b - continuous.

Proof. Let $x \in X$ and V be an open set of Y containing f(x). By definition of semi - regularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subset V$. Since f is almost contra sg^*b - continuous, there exists $U \in sg^*b - O(X, x)$ such that $f(U) \subset G$. Hence we have $f(U) \subset G \subset V$. This shows that f is sg^*b - continuous function. \Box

7 Compactness

Definition 7.1. A space X is said to be:

(1) sg^*b - compact if every sg^*b - open cover of X has a finite subcover.

(2) sg^*b - closed compact if every sg^*b - closed cover of X has a finite subcover.

(3) Nearly compact if every regular open cover of X has a finite subcover.

(4) Countably sg^*b - compact if every countable cover of X by sg^*b - open sets has a finite subcover.

(5) Countably sg^*b - closed compact if every countable cover of X by sg^*b - closed sets has a finite sub cover.

(6) Nearly countably compact if every countable cover of X by regular open sets has a finite sub cover.

(7) sg^*b - Lindelof if every sg^*b - open cover of X has a countable sub cover.

(8) sg^*b - Lindelof if every sg^*b - closed cover of X has a countable sub cover.

(9) Nearly Lindelof if every regular open cover of X has a countable sub cover.

(10) S - Lindelof if every cover of X by regular closed sets has a countable sub cover.

(11) Countably S - closed if every countable cover of X by regular closed sets has a finite sub - cover.

(12) S - closed if every regular closed cover of x has a finite sub cover.

Theorem 7.2. Let $f : X \to Y$ be an almost contra sg^*b - continuous surjection. Then, the following properties hold:

(1) If X is sg^*b - closed compact, then Y is nearly compact.

(2) If X is countably sg^*b - closed compact, then Y is nearly countably compact.

(3) If X is sg^*b - Lindelof, then Y is nearly Lindelof.

Proof. (1) Let $\{V_{\alpha} : \alpha \in I\}$ be any regular open cover of Y. Since f is almost contra sg^*b - continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is sg^*b - closed cover of X. Since X is sg^*b - closed compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{(V_{\alpha}) : \alpha \in I_0\}$ which is finite sub cover of Y, therefore Y is nearly compact.

(2) Let $\{V_{\alpha} : \alpha \in I\}$ be any countable regular open cover of Y. Since f is almost contra sg^*b - continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is countable sg^*b - closed cover of X. Since X is countably sg^*b - closed compact, there exists a finite subset I_0 of I such that $X = \cup\{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \cup\{(V_{\alpha}) : \alpha \in I_0\}$ is finite subcover for Y. Hence Y is nearly countably compact.

(3) Let $\{V_{\alpha} : \alpha \in I\}$ be any regular open cover of Y. Since f is almost contra sg^*b - continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is sg^*b - closed cover of X. Since X is sg^*b - Lindelof, there exists a countable subset I_0 of I such that $X = \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \cup\{(V_{\alpha}) : \alpha \in I_0\}$ is finite sub cover for Y. Therefore, Y is nearly Lindelof. \Box

Theorem 7.3. Let $f : X \to Y$ be an almost contra sg^*b - continuous surjection. Then, the following properties hold: (1) If X is sg^*b - compact, then Y is S - closed. (2) If X is countably sg^*b - closed, then Y is is countably S - closed. (3) If X is sg^*b - Lindelof, then Y is S - Lindelof.

Proof. (1) Let $\{V_{\alpha} : \alpha \in I\}$ be any regular closed cover of Y. Since f is almost contra sg^*b - continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is sg^*b - open cover of X. Since X is sg^*b - compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$ is finite sub cover for Y. Therefore, Y is S - closed.

(2) Let $\{V_{\alpha} : \alpha \in I\}$ be any countable regular closed cover of Y. Since f is almost contra sg^*b - continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is countable sg^*b - open cover of X. Since X is countably sg^*b - compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$ is finite sub cover for Y. Hence, Y is countably S - closed. (3) Let $\{V_{\alpha} : \alpha \in I\}$ be any regular closed cover of Y. Since f is almost contra sg^*b - continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is sg^*b - open cover of X. Since X is sg^*bsg^*b - Lindelof, there exists a countable sub - set I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$ is finite sub cover for Y. Hence, $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$ is finite sub cover for Y. Since f is surjective, $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$ is finite sub cover for Y. Hence, Y is S - Lindelof. \Box

References

 Ahmad Al - Omari and Mohd. Salmi Md. Noorani, On Generalized b closed sets, Bull. Malays. Math. Sci. Soc(2), vol. 32, no. 1, (2009), pp. 19 - 30.

- [2] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets on topology, Indian J. Maths., vol. 29, no. 3, 1987, pp. 375–382.
- [3] J. Dontchev, On generalized semi- pre open sets, Mem. Fac. Sci. Kochi. Univ. ser. A. math., vol. 16, (1995), pp. 35.
- [4] E. Ekici, Almost contra-pre continuous functions, Bull. Malays. Math. Sci. Soc., vol. 27, no. 1, (2004), pp.53–65.
- [5] Y. Gnanambal, On generalized pre-regular closed sets in topological spaces, Indian J. Pure. Appl. Math., vol. 28, (1997), pp. 351–360.
- [6] D. Iyappan and N. Nagaveni, On semi generalized b-closed set, Nat. Sem. On Mat. & Comp. Sci., Jan (2010), Proc.6.
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, vol. 70, (1963)), pp. 36–41.
- [8] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., vol. 15, (1994), pp. 51–63.
- [9] A.S. Mashor Abd., M.E. El-Monsef and S.N. Ei-Deeb, On Pre continuus and weak pre-continuus mapping, Proc. Math. Phys. Soc. Egypt, vol. 53, (1982), pp. 47–53.
- [10] Metin Akdag and Alkan Ozkan, Some properties of Contra gb-continuous functions, Journal of New results in Science, vol. 1, (2012), pp. 40–49.
- [11] T. Noiri, Almost α continuous functions, Kyunpook Math. J., vol. 1, (1988), pp. 71.
- [12] O. Ravi and S. Ganesan, *ÿ* closed sets in Topology, International Journal of Computer Science & Emerging Technologies, vol. 2, no. 3, (2011), pp. 330–337.
- [13] S. Sekar and B. Jothilakshmi, On semi generalized star b closed set in Topological Spaces, International Journal of Pure and Applied Mathematics, vol. 111, no. 3, (2016).
- [14] M.K.R.S. Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi. Univ. Ser.A, Math., vol. 21, (2000), pp. 1–19.

Received: December 6, 2016