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Abstract

In this note, we present the hyperbolic Gülicher theorem in the
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1 Introduction

Hyperbolic geometry appeared in the first half of the 19th century as an at-
tempt to understand Euclid’s axiomatic basis of geometry. It is also known
as a type of non-euclidean geometry, being in many respects similar to eu-
clidean geometry. Hyperbolic geometry includes similar concepts as distance
and angle. Both these geometries have many results in common but many
are different. Several useful models of hyperbolic geometry are studied in the
literature as, for instance, the Poincaré disk and ball models, the Poincaré
half-plane model, and the Beltrami-Klein disk and ball models, etc. Follow-
ing [4] and [5] and earlier discoveries, the Beltrami-Klein model is also known
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as the Einstein relativistic velocity model. Here, in this study, we present a
Proof of Gülicher’s theorem in the Poincaré disk model of hyperbolic geome-
try. Gülicher’s theorem states that if Q1Q2Q3 is the cevian triangle of point
Q with respect to the triangle P1P2P3, and R1R2R3 is the cevian triangle of
point R with respect to the triangle Q1Q2Q3, then the lines P1R1, P2R2, and
P3R3 are concurrent [3].

Let D denote the complex unit disk in complex z - plane, i.e.

D = {z ∈ C : |z| < 1}.

The most general Möbius transformation of D is

z → eiθ
z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition⊕ inD, allowing the Möbius transformation
of the disk to be viewed as a Möbius left gyrotranslation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the
complex conjugate of z0. Let Aut(D,⊕) be the automorphism group of the
grupoid (D,⊕). If we define

gyr : D ×D → Aut(D,⊕), gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then is true gyrocommutative law

a⊕ b = gyr[a, b](b⊕ a).

A gyrovector space (G,⊕,⊗) is a gyrocommutative gyrogroup (G,⊕) that
obeys the following axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.

(2) G admits a scalar multiplication, ⊗, possessing the following properties.
For all real numbers r, r1, r2 ∈ R and all points a ∈G:

(G1) 1⊗ a = a

(G2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a

(G3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a)

(G4) |r|⊗a

‖r⊗a‖
= a

‖a‖

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1
(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of one dimen-

sional ”vectors”
‖G‖ = {±‖a‖ : a ∈ G} ⊂ R,
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with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R

and a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖
(G8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖

Definition 1.1 The hyperbolic distance function in D is defined by the
equation

d(a, b) = |a⊖ b| =

∣

∣

∣

∣

a− b

1− ab

∣

∣

∣

∣

.

Here, a⊖ b = a⊕ (−b), for a, b ∈ D.

Theorem 1.2 (The law of gyrosines in Möbius gyrovector spaces).
Let ABC be a gyrotriangle in a Möbius gyrovector space (Vs,⊕,⊗) with ver-
tices A,B,C ∈ Vs, sides a,b, c ∈ Vs, and side gyrolengths a, b, c ∈ (−s, s),
a = ⊖B⊕C, b = ⊖C⊕A, c = ⊖A⊕B, a = ‖a‖ , b = ‖b‖ , c = ‖c‖ , and with
gyroangles α, β, and γ at the vertices A,B, and C. Then aγ

sinα
= bγ

sinβ
= cγ

sinγ
,

where vγ = v

1− v2

s2

.

(see [4], p. 294)
For further details we refer to the recent book of A.Ungar [4].

Theorem 1.3 (Transversal Theorem for Gyrotriangles). Let D be
on gyroside BC, and l is a gyroline not through any vertex of a gyrotriangle
ABC such that l meets AB in M, AC in N , and AD in P , then

(BD)γ
(CD)γ

·
(CA)γ
(NA)γ

·
(NP )γ
(MP )γ

·
(MA)γ
(BA)γ

= 1.

(see [2])

Theorem 1.4 (The Ceva’s Theorem for Hyperbolic Gyrotriangle).
If M is a point not on any side of an gyrotriangle A1A2A3 such that A3M and
A1A2 meet in P, A2M and A3A1 in Q, and A1M and A2A3 meet in R, then

(A1P )γ
(A2P )γ

·
(A2R)γ
(A3R1)γ

·
(A3Q)γ
(A1Q)γ

= 1

(see [1])

Theorem 1.5 (Converse of Ceva’s Theorem for Hyperbolic Gyrotriangle).
If P lies on the gyroline A1A2, R on A2A3, and Q on A3A1 such that

(A1P )γ
(A2P )γ

·
(A2R)γ
(A3R1)γ

·
(A3Q)γ
(A1Q)γ

= 1,

and two of the gyrolines A1R, A2Q and A3P meet, then all three are concurrent.

(see [1])



308 Cătălin Barbu and Laurian-Ioan Pişcoran

2 Main Results

In this section, we prove the Gülicher’s theorem in the Poincaré disk model of
hyperbolic geometry.

Theorem 2.1 (The Gülicher’s Theorem for Hyperbolic Gyrotriangle).
Let Q1Q2Q3 be the cevian gyrotriangle of gyropoint Q with respect to the
gyrotriangle P1P2P3, and Q is located inside the gyrotriangle P1P2P3. Let
R1R2R3 be the cevian gyrotriangle of gyropoint R with respect to the gyro-
triangle Q1Q2Q3, and R is located inside the gyrotriangle Q1Q2Q3. Then the
gyrolines P1R1, P2R2, and P3R3 are concurrent.

Proof. Let X, Y, Z be the intersection points of the gyrolines P1R1, P2R2,

and P3R3 with gyroline P2P3, P3P1, and P1P2, respectively (See Figure 1).

If we use a Theorem 1.3 in the gyrotriangle P1P2P3 for the gyrolines P1R1X,P2R2Y,

and P3R3Z, we have

(P2X)γ
(P3X)γ

=
(P1Q2)γ
(P1Q3)γ

·
(R1Q3)γ
(R1Q2)γ

·
(P1P2)γ
(P1P3)γ

(1)

and
(P3Y )γ
(P1Y )γ

=
(P2Q3)γ
(P2Q1)γ

·
(R2Q1)γ
(R2Q3)γ

·
(P2P3)γ
(P2P1)γ

, (2)

and
(P1Z)γ
(P2Z)γ

=
(P3Q1)γ
(P3Q2)γ

·
(R3Q2)γ
(R3Q1)γ

·
(P3P1)γ
(P3P2)γ

. (3)

Multiplying relations (1), (2), and (3) member by member, we obtain

(P2X)γ
(P3X)γ

·
(P3Y )γ
(P1Y )γ

·
(P1Z)γ
(P2Z)γ
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=

[

(P1Q2)γ
(P1Q3)γ

·
(P2Q3)γ
(P2Q1)γ

·
(P3Q1)γ
(P3Q2)γ

]

·

[

(R1Q3)γ
(R1Q2)γ

·
(R2Q1)γ
(R2Q3)γ

·
(R3Q2)γ
(R3Q1)γ

]

. (4)

If we use a Theorem 1.4 for the gyrotriangles P1P2P3 and Q1Q2Q3 with con-
current cevians P1Q1, P2Q2, P3Q3 and Q1R1, Q2R2, Q3R3 respectively, we get

(P1Q2)γ
(P3Q2)γ

·
(P2Q3)γ
(P1Q3)γ

·
(P3Q1)γ
(P2Q1)γ

= 1 (5)

and
(R1Q3)γ
(R1Q2)γ

·
(R2Q1)γ
(R2Q3)γ

·
(R3Q2)γ
(R3Q1)γ

= 1. (6)

From (4), (5), and (6) we obtain

(P2X)γ
(P3X)γ

·
(P3Y )γ
(P1Y )γ

·
(P1Z)γ
(P2Z)γ

= 1, (7)

since, from theorem 1.5, that the gyrolines P1R1, P2R2, and P3R3 are concur-
rent.

Lemma 2.2 (The Gyrotriangle Bisector Theorem). Let ABC be a
gyrotriangle in a Möbius gyrovector space (Vs,⊕,⊗) with vertices A,B,C ∈ Vs,

sides a,b, c ∈ Vs, and side gyrolengths a, b, c ∈ (−s, s), a = ⊖B⊕C, b = ⊖C⊕
A, c = ⊖A ⊕ B, a = ‖a‖ , b = ‖b‖ , c = ‖c‖ , and let D be a point lying on
side BC of the gyrotriangle such that AD is a bisector of gyroangle ∠BAC .
Then

(DB)γ
(DC)γ

=
(AB)γ
(AC)γ

,

where vγ = v

1− v2

s2

.

Proof. Denote by α1 = ∠BAD, and α2 = ∠CAD. Because AD is a
bisector of gyroangle ∠BAC, we get that sinα1 = sinα2 (see Figure 2).
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If we use a Theorem 1.2 in the gyrotriangles ABC,ABD, and ACD we have

sinC

sinB
=

(AB)γ
(AC)γ

, (8)

and
sinα1

sinB
=

(DB)γ
(DA)γ

, (9)

and
sinα2

sinC
=

(DC)γ
(DA)γ

. (10)

If ratios the equations (9) and (10) among themselves, respectively, then

sinC

sinB
=

(DB)γ
(DC)γ

. (11)

From the relations (8) and (11) the conclusion follows.

Theorem 2.3 Let Q1Q2Q3 be the cevian gyrotriangle of gyropoint Q with
respect to the gyrotriangle P1P2P3, and Q is located inside the gyrotriangle
P1P2P3. If the bisectors of gyroangles of gyrotriangle P1P2P3 meet the gyrosides
Q2Q3, Q3Q1, and Q1Q3 at the gyropoints R1, R2, and R3, respectively, then the
gyrolines Q1R1, Q2R2, and Q3R3 are concurrent.

Proof. If we use a Theorem 1.4 in the gyrotriangle P1P2P3 for concurrent
cevians P1Q1, P2Q2, P3Q3 (see Figure 1), we get

(P1Q2)γ
(P3Q2)γ

·
(P2Q3)γ
(P1Q3)γ

·
(P3Q1)γ
(P2Q1)γ

= 1. (12)

Now, we use Lemma 2.2 in the gyrotriangles P1Q2Q3, P2Q3Q1, and P3Q1Q2

we have
(P1Q2)γ
(P1Q3)γ

=
(R1Q2)γ
(R1Q3)γ

, (13)

and
(P2Q3)γ
(P2Q1)γ

=
(R2Q3)γ
(R2Q1)γ

, (14)

and
(P3Q1)γ
(P3Q2)γ

=
(R3Q1)γ
(R3Q2)γ

. (15)

Multiplying the relations (13), (14), and (15), and we use the relation (12) we
obtain

(R1Q2)γ
(R1Q3)γ

·
(R2Q3)γ
(R2Q1)γ

·
(R3Q1)γ
(R3Q2)γ

= 1, (16)
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and by Theorem 1.5, we get that the gyrolines Q1R1, Q2R2, and Q3R3 are
concurrent.

Many of the theorems of Euclidean geometry are relatively similar form in
the Poincaré model of hyperbolic geometry, Gülicher’s theorem is an example
in this respect. In the Euclidean limit of large s, s → ∞, vγ reduces to v, so
Gülicher’s theorem for hyperbolic triangle reduces to the Gülicher’s theorem
of euclidian geometry.
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