ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n-SPACE

Yusuf YAYLI

Department of Mathematics, Faculty of Science, University of Ankara, Tandoğan, Ankara,

Evren ZIPLAR

Department of Mathematics, Faculty of Science, University of Ankara, Tandoğan, Ankara,

Abstract

In this paper, in Euclidean n-space E^n , we investigate the relation between slant helices and spherical helices. Moreover, in E^n , we show that a slant helix and the tangent indicatrix of the slant helix have the same axis (or direction). Also, we give the important relations between slant helices, spherical helices in E^n and geodesic curves on a helix hypersurface in E^n .

Keywords: Slant helices, General helices, Spherical helices, Ttangent indicatrix, Helix hypersurfaces

Mathematics Subject Classification 2000: 53A04, 53B25, 53C40, 53C50

1. Introduction

Slant helice is one of the most important topics of differential geometry. Izumiya and Takeuchi have investigated the many properties of slant helices that the normal lines make a constant angle with a fixed direction in Euclidean 3-space [14]. Moreover, they proved that a space curve is a slant helix if and only if the geodesic curvature of the principal normal of the curve is a constant function [14].

- [16] S. Yılmaz and M. Turgut, A new version of Bishop frame and an application to spherical images, *Journal of Mathematical Analysis and Applications.*, 371 (2), (2010) pg. 764-776.
- [17] Y. Yaylı and E. Zıplar, Constant angle ruled surfaces in Euclidean spaces, (2011), Submitted.